Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007725344> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3007725344 abstract "A majority of American households with broadband today subscribe to a cable broadband service. The technology underpinning this cable broadband service is DOCSIS (Data-Over-Cable Service Interface Specifications). The latest version of this technology, DOCSIS 3.1, enables higher modem speeds compared to the previous DOCSIS 3.0 technology. DOCSIS 3.1 provides faster speeds by increasing the modulation order, and by using Orthogonal Frequency-Division Multiplexing (OFDM) to enable the use of such higher modulation orders. DOCSIS 3.1 allows different modems to use different modulations on different parts of the spectrum. Due to the complexity of selecting and configuring these varying modulation levels across the spectrum, most operators use the same modulation level across the entire spectrum. They configure multiple such profiles on a channel, so that different modems can use the most appropriate profile for them. This enable modems on a cleaner part of the plant to run higher modulations. However, the problem with such an approach is that noise in one part of the spectrum might reduce the entire channel's modulation to limit bit errors. A more sophisticated approach is to use profiles that dynamically vary the modulation on different sub-carriers to best match the noise conditions experienced in the plant. We leverage a Machine Learning based dynamic profile management approach and tested it on data from a top 10 US Cable Company and we observe more than 4% broadband bandwidth gains on average, with some consumers in noisy plant conditions seeing over 30% increase in their bandwidth speeds. And the gains are far more dramatic when compared with using lower modulation profiles (similar to DOCSIS 3.0), with average gain itself being over 37%." @default.
- W3007725344 created "2020-03-06" @default.
- W3007725344 creator A5001327717 @default.
- W3007725344 creator A5084121053 @default.
- W3007725344 date "2019-12-01" @default.
- W3007725344 modified "2023-10-18" @default.
- W3007725344 title "A Machine Learning Approach to Maximizing Broadband Capacity via Dynamic DOCSIS 3.1 Profile Management" @default.
- W3007725344 cites W2120636855 @default.
- W3007725344 cites W2150593711 @default.
- W3007725344 doi "https://doi.org/10.1109/icmla.2019.00064" @default.
- W3007725344 hasPublicationYear "2019" @default.
- W3007725344 type Work @default.
- W3007725344 sameAs 3007725344 @default.
- W3007725344 citedByCount "2" @default.
- W3007725344 countsByYear W30077253442021 @default.
- W3007725344 crossrefType "proceedings-article" @default.
- W3007725344 hasAuthorship W3007725344A5001327717 @default.
- W3007725344 hasAuthorship W3007725344A5084121053 @default.
- W3007725344 hasConcept C107038049 @default.
- W3007725344 hasConcept C121332964 @default.
- W3007725344 hasConcept C123079801 @default.
- W3007725344 hasConcept C125599584 @default.
- W3007725344 hasConcept C127162648 @default.
- W3007725344 hasConcept C127413603 @default.
- W3007725344 hasConcept C129002938 @default.
- W3007725344 hasConcept C138885662 @default.
- W3007725344 hasConcept C158523808 @default.
- W3007725344 hasConcept C160724564 @default.
- W3007725344 hasConcept C182336301 @default.
- W3007725344 hasConcept C204827203 @default.
- W3007725344 hasConcept C24326235 @default.
- W3007725344 hasConcept C2776257435 @default.
- W3007725344 hasConcept C31258907 @default.
- W3007725344 hasConcept C40409654 @default.
- W3007725344 hasConcept C41008148 @default.
- W3007725344 hasConcept C49040817 @default.
- W3007725344 hasConcept C509933004 @default.
- W3007725344 hasConcept C6260449 @default.
- W3007725344 hasConcept C76155785 @default.
- W3007725344 hasConceptScore W3007725344C107038049 @default.
- W3007725344 hasConceptScore W3007725344C121332964 @default.
- W3007725344 hasConceptScore W3007725344C123079801 @default.
- W3007725344 hasConceptScore W3007725344C125599584 @default.
- W3007725344 hasConceptScore W3007725344C127162648 @default.
- W3007725344 hasConceptScore W3007725344C127413603 @default.
- W3007725344 hasConceptScore W3007725344C129002938 @default.
- W3007725344 hasConceptScore W3007725344C138885662 @default.
- W3007725344 hasConceptScore W3007725344C158523808 @default.
- W3007725344 hasConceptScore W3007725344C160724564 @default.
- W3007725344 hasConceptScore W3007725344C182336301 @default.
- W3007725344 hasConceptScore W3007725344C204827203 @default.
- W3007725344 hasConceptScore W3007725344C24326235 @default.
- W3007725344 hasConceptScore W3007725344C2776257435 @default.
- W3007725344 hasConceptScore W3007725344C31258907 @default.
- W3007725344 hasConceptScore W3007725344C40409654 @default.
- W3007725344 hasConceptScore W3007725344C41008148 @default.
- W3007725344 hasConceptScore W3007725344C49040817 @default.
- W3007725344 hasConceptScore W3007725344C509933004 @default.
- W3007725344 hasConceptScore W3007725344C6260449 @default.
- W3007725344 hasConceptScore W3007725344C76155785 @default.
- W3007725344 hasLocation W30077253441 @default.
- W3007725344 hasOpenAccess W3007725344 @default.
- W3007725344 hasPrimaryLocation W30077253441 @default.
- W3007725344 hasRelatedWork W1545806248 @default.
- W3007725344 hasRelatedWork W1831256304 @default.
- W3007725344 hasRelatedWork W1906072090 @default.
- W3007725344 hasRelatedWork W2142433931 @default.
- W3007725344 hasRelatedWork W2311821801 @default.
- W3007725344 hasRelatedWork W2377146091 @default.
- W3007725344 hasRelatedWork W2475551208 @default.
- W3007725344 hasRelatedWork W2550889794 @default.
- W3007725344 hasRelatedWork W2890581364 @default.
- W3007725344 hasRelatedWork W3150330951 @default.
- W3007725344 isParatext "false" @default.
- W3007725344 isRetracted "false" @default.
- W3007725344 magId "3007725344" @default.
- W3007725344 workType "article" @default.