Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007746877> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3007746877 endingPage "14" @default.
- W3007746877 startingPage "1" @default.
- W3007746877 abstract "In software projects, a large number of bugs are usually reported to bug repositories. Due to the limited budge and work force, the developers often may not have enough time and ability to inspect all the reported bugs, and thus they often focus on inspecting and repairing the highly impacting bugs. Among the high-impact bugs, surprise bugs are reported to be a fatal threat to the software systems, though they only account for a small proportion. Therefore, the identification of surprise bugs becomes an important work in practices. In recent years, some methods have been proposed by the researchers to identify surprise bugs. Unfortunately, the performance of these methods in identifying surprise bugs is still not satisfied for the software projects. The main reason is that surprise bugs only occupy a small percentage of all the bugs, and it is difficult to identify these surprise bugs from the imbalanced distribution. In order to overcome the imbalanced category distribution of the bugs, a method based on machine learning to predict surprise bugs is presented in this paper. This method takes into account the textual features of the bug reports and employs an imbalanced learning strategy to balance the datasets of the bug reports. Then these datasets after balancing are used to train three selected classifiers which are built by three different classification algorithms and predict the datasets with unknown type. In particular, an ensemble method named optimization integration is proposed to generate a unique and best result, according to the results produced by the three classifiers. This ensemble method is able to adjust the ability of the classifier to detect different categories based on the characteristics of different projects and integrate the advantages of three classifiers. The experiments performed on the datasets from 4 software projects show that this method performs better than the previous methods in terms of detecting surprise bugs." @default.
- W3007746877 created "2020-03-06" @default.
- W3007746877 creator A5014178425 @default.
- W3007746877 creator A5018071549 @default.
- W3007746877 creator A5058876561 @default.
- W3007746877 creator A5063514061 @default.
- W3007746877 creator A5065859286 @default.
- W3007746877 creator A5074619204 @default.
- W3007746877 date "2020-02-19" @default.
- W3007746877 modified "2023-10-17" @default.
- W3007746877 title "Surprise Bug Report Prediction Utilizing Optimized Integration with Imbalanced Learning Strategy" @default.
- W3007746877 cites W2017102318 @default.
- W3007746877 cites W2021137987 @default.
- W3007746877 cites W2063251174 @default.
- W3007746877 cites W2068119731 @default.
- W3007746877 cites W2083352779 @default.
- W3007746877 cites W2099821052 @default.
- W3007746877 cites W2118978333 @default.
- W3007746877 cites W2120457925 @default.
- W3007746877 cites W2147386665 @default.
- W3007746877 cites W2148143831 @default.
- W3007746877 cites W2155806188 @default.
- W3007746877 cites W2164330572 @default.
- W3007746877 cites W2279039799 @default.
- W3007746877 cites W2570487166 @default.
- W3007746877 cites W2622634640 @default.
- W3007746877 cites W2767190431 @default.
- W3007746877 cites W2887220169 @default.
- W3007746877 cites W2913228078 @default.
- W3007746877 cites W2913934963 @default.
- W3007746877 cites W2915062141 @default.
- W3007746877 cites W2920376357 @default.
- W3007746877 cites W2943056280 @default.
- W3007746877 cites W2944566775 @default.
- W3007746877 cites W2980135568 @default.
- W3007746877 cites W2986005267 @default.
- W3007746877 cites W2989980396 @default.
- W3007746877 doi "https://doi.org/10.1155/2020/8509821" @default.
- W3007746877 hasPublicationYear "2020" @default.
- W3007746877 type Work @default.
- W3007746877 sameAs 3007746877 @default.
- W3007746877 citedByCount "3" @default.
- W3007746877 countsByYear W30077468772021 @default.
- W3007746877 countsByYear W30077468772022 @default.
- W3007746877 crossrefType "journal-article" @default.
- W3007746877 hasAuthorship W3007746877A5014178425 @default.
- W3007746877 hasAuthorship W3007746877A5018071549 @default.
- W3007746877 hasAuthorship W3007746877A5058876561 @default.
- W3007746877 hasAuthorship W3007746877A5063514061 @default.
- W3007746877 hasAuthorship W3007746877A5065859286 @default.
- W3007746877 hasAuthorship W3007746877A5074619204 @default.
- W3007746877 hasBestOaLocation W30077468771 @default.
- W3007746877 hasConcept C1009929 @default.
- W3007746877 hasConcept C116834253 @default.
- W3007746877 hasConcept C119857082 @default.
- W3007746877 hasConcept C154945302 @default.
- W3007746877 hasConcept C15744967 @default.
- W3007746877 hasConcept C199360897 @default.
- W3007746877 hasConcept C2777904410 @default.
- W3007746877 hasConcept C2780343955 @default.
- W3007746877 hasConcept C41008148 @default.
- W3007746877 hasConcept C59822182 @default.
- W3007746877 hasConcept C77805123 @default.
- W3007746877 hasConcept C86803240 @default.
- W3007746877 hasConceptScore W3007746877C1009929 @default.
- W3007746877 hasConceptScore W3007746877C116834253 @default.
- W3007746877 hasConceptScore W3007746877C119857082 @default.
- W3007746877 hasConceptScore W3007746877C154945302 @default.
- W3007746877 hasConceptScore W3007746877C15744967 @default.
- W3007746877 hasConceptScore W3007746877C199360897 @default.
- W3007746877 hasConceptScore W3007746877C2777904410 @default.
- W3007746877 hasConceptScore W3007746877C2780343955 @default.
- W3007746877 hasConceptScore W3007746877C41008148 @default.
- W3007746877 hasConceptScore W3007746877C59822182 @default.
- W3007746877 hasConceptScore W3007746877C77805123 @default.
- W3007746877 hasConceptScore W3007746877C86803240 @default.
- W3007746877 hasFunder F4320321001 @default.
- W3007746877 hasLocation W30077468771 @default.
- W3007746877 hasLocation W30077468772 @default.
- W3007746877 hasOpenAccess W3007746877 @default.
- W3007746877 hasPrimaryLocation W30077468771 @default.
- W3007746877 hasRelatedWork W2961085424 @default.
- W3007746877 hasRelatedWork W3007746877 @default.
- W3007746877 hasRelatedWork W3046775127 @default.
- W3007746877 hasRelatedWork W3170094116 @default.
- W3007746877 hasRelatedWork W3209574120 @default.
- W3007746877 hasRelatedWork W4205958290 @default.
- W3007746877 hasRelatedWork W4286629047 @default.
- W3007746877 hasRelatedWork W4306321456 @default.
- W3007746877 hasRelatedWork W4306674287 @default.
- W3007746877 hasRelatedWork W4224009465 @default.
- W3007746877 hasVolume "2020" @default.
- W3007746877 isParatext "false" @default.
- W3007746877 isRetracted "false" @default.
- W3007746877 magId "3007746877" @default.
- W3007746877 workType "article" @default.