Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007750971> ?p ?o ?g. }
- W3007750971 endingPage "4517" @default.
- W3007750971 startingPage "4506" @default.
- W3007750971 abstract "In drug discovery, knowledge of the graph structure of chemical compounds is essential. Many thousands of scientific articles and patents in chemistry and pharmaceutical sciences have investigated chemical compounds, but in many cases, the details of the structure of these chemical compounds are published only as an image. A tool to analyze these images automatically and convert them into a chemical graph structure would be useful for many applications, such as drug discovery. A few such tools are available and they are mostly derived from optical character recognition. However, our evaluation of the performance of these tools reveals that they often make mistakes in recognizing the correct bond multiplicity and stereochemical information. In addition, errors sometimes even lead to missing atoms in the resulting graph. In our work, we address these issues by developing a compound recognition method based on machine learning. More specifically, we develop a deep neural network model for optical compound recognition. The deep learning solution presented here consists of a segmentation model, followed by three classification models that predict atom locations, bonds, and charges. Furthermore, this model not only predicts the graph structure of the molecule but also provides all information necessary to relate each component of the resulting graph to the source image. This solution is scalable and can rapidly process thousands of images. Finally, we empirically compare the proposed method with the well-established tool OSRA1 and observe significant error reduction." @default.
- W3007750971 created "2020-03-06" @default.
- W3007750971 creator A5013370800 @default.
- W3007750971 creator A5025431904 @default.
- W3007750971 creator A5041984163 @default.
- W3007750971 creator A5048408288 @default.
- W3007750971 date "2020-09-14" @default.
- W3007750971 modified "2023-10-11" @default.
- W3007750971 title "ChemGrapher: Optical Graph Recognition of Chemical Compounds by Deep Learning" @default.
- W3007750971 cites W1901129140 @default.
- W3007750971 cites W1966456689 @default.
- W3007750971 cites W1975147762 @default.
- W3007750971 cites W1976144034 @default.
- W3007750971 cites W2009867031 @default.
- W3007750971 cites W2021662118 @default.
- W3007750971 cites W2051554764 @default.
- W3007750971 cites W2051810242 @default.
- W3007750971 cites W2107878631 @default.
- W3007750971 cites W2160592517 @default.
- W3007750971 cites W2194775991 @default.
- W3007750971 cites W2290847742 @default.
- W3007750971 cites W2395611524 @default.
- W3007750971 cites W2464708700 @default.
- W3007750971 cites W2531409750 @default.
- W3007750971 cites W2558999090 @default.
- W3007750971 cites W2735246657 @default.
- W3007750971 cites W2749279690 @default.
- W3007750971 cites W2790808809 @default.
- W3007750971 cites W2901476322 @default.
- W3007750971 cites W2919115771 @default.
- W3007750971 cites W2963150697 @default.
- W3007750971 cites W2963734039 @default.
- W3007750971 cites W3098269892 @default.
- W3007750971 doi "https://doi.org/10.1021/acs.jcim.0c00459" @default.
- W3007750971 hasPublicationYear "2020" @default.
- W3007750971 type Work @default.
- W3007750971 sameAs 3007750971 @default.
- W3007750971 citedByCount "31" @default.
- W3007750971 countsByYear W30077509712020 @default.
- W3007750971 countsByYear W30077509712021 @default.
- W3007750971 countsByYear W30077509712022 @default.
- W3007750971 countsByYear W30077509712023 @default.
- W3007750971 crossrefType "journal-article" @default.
- W3007750971 hasAuthorship W3007750971A5013370800 @default.
- W3007750971 hasAuthorship W3007750971A5025431904 @default.
- W3007750971 hasAuthorship W3007750971A5041984163 @default.
- W3007750971 hasAuthorship W3007750971A5048408288 @default.
- W3007750971 hasBestOaLocation W30077509712 @default.
- W3007750971 hasConcept C108583219 @default.
- W3007750971 hasConcept C119857082 @default.
- W3007750971 hasConcept C124101348 @default.
- W3007750971 hasConcept C132525143 @default.
- W3007750971 hasConcept C153180895 @default.
- W3007750971 hasConcept C154945302 @default.
- W3007750971 hasConcept C185592680 @default.
- W3007750971 hasConcept C41008148 @default.
- W3007750971 hasConcept C48044578 @default.
- W3007750971 hasConcept C50644808 @default.
- W3007750971 hasConcept C55493867 @default.
- W3007750971 hasConcept C74187038 @default.
- W3007750971 hasConcept C77088390 @default.
- W3007750971 hasConcept C80444323 @default.
- W3007750971 hasConcept C89600930 @default.
- W3007750971 hasConceptScore W3007750971C108583219 @default.
- W3007750971 hasConceptScore W3007750971C119857082 @default.
- W3007750971 hasConceptScore W3007750971C124101348 @default.
- W3007750971 hasConceptScore W3007750971C132525143 @default.
- W3007750971 hasConceptScore W3007750971C153180895 @default.
- W3007750971 hasConceptScore W3007750971C154945302 @default.
- W3007750971 hasConceptScore W3007750971C185592680 @default.
- W3007750971 hasConceptScore W3007750971C41008148 @default.
- W3007750971 hasConceptScore W3007750971C48044578 @default.
- W3007750971 hasConceptScore W3007750971C50644808 @default.
- W3007750971 hasConceptScore W3007750971C55493867 @default.
- W3007750971 hasConceptScore W3007750971C74187038 @default.
- W3007750971 hasConceptScore W3007750971C77088390 @default.
- W3007750971 hasConceptScore W3007750971C80444323 @default.
- W3007750971 hasConceptScore W3007750971C89600930 @default.
- W3007750971 hasFunder F4320321732 @default.
- W3007750971 hasFunder F4320322681 @default.
- W3007750971 hasFunder F4320326631 @default.
- W3007750971 hasFunder F4320327336 @default.
- W3007750971 hasIssue "10" @default.
- W3007750971 hasLocation W30077509711 @default.
- W3007750971 hasLocation W30077509712 @default.
- W3007750971 hasLocation W30077509713 @default.
- W3007750971 hasLocation W30077509714 @default.
- W3007750971 hasOpenAccess W3007750971 @default.
- W3007750971 hasPrimaryLocation W30077509711 @default.
- W3007750971 hasRelatedWork W1838576100 @default.
- W3007750971 hasRelatedWork W1983399550 @default.
- W3007750971 hasRelatedWork W2089704382 @default.
- W3007750971 hasRelatedWork W2095886385 @default.
- W3007750971 hasRelatedWork W2389214306 @default.
- W3007750971 hasRelatedWork W2965083567 @default.
- W3007750971 hasRelatedWork W4235240664 @default.
- W3007750971 hasRelatedWork W4315434538 @default.
- W3007750971 hasRelatedWork W4375867731 @default.