Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007765705> ?p ?o ?g. }
- W3007765705 endingPage "199" @default.
- W3007765705 startingPage "182" @default.
- W3007765705 abstract "This study proposes a tensor-based K-Nearest Neighbors (K-NN) method, in which traffic patterns involve multi-dimensional temporal information and bi-directional spatial information. Such multi-temporal information can not only capture the instantaneous fluctuation of short-term traffic but keep the general trend of long-term traffic. In numerical experiments, with taxis’ GPS data from an urban road network, traffic speed data are organized into one- (2 min), two- (4 min) and three- (2, 4 and 10 min) temporal dimensions. Meanwhile, spatial information about six upstream links and six downstream links of the target link is incorporated to construct the tensor-based data structure. Numerical results show that the K-NN with three temporal dimensions (K-NN 3D) outperforms other methods under no data missing or under various random/module/mixed data missing rates. In summary, the tensor-based K-NN method is promising in the traffic prediction under data missing cases." @default.
- W3007765705 created "2020-03-06" @default.
- W3007765705 creator A5005657243 @default.
- W3007765705 creator A5021302609 @default.
- W3007765705 creator A5060972658 @default.
- W3007765705 creator A5081146104 @default.
- W3007765705 date "2020-01-02" @default.
- W3007765705 modified "2023-09-26" @default.
- W3007765705 title "A tensor-based <i>K</i>-nearest neighbors method for traffic speed prediction under data missing" @default.
- W3007765705 cites W1498436455 @default.
- W3007765705 cites W1631393190 @default.
- W3007765705 cites W1798398164 @default.
- W3007765705 cites W1814521481 @default.
- W3007765705 cites W1966246550 @default.
- W3007765705 cites W1967681834 @default.
- W3007765705 cites W1971757341 @default.
- W3007765705 cites W1978632288 @default.
- W3007765705 cites W1980428773 @default.
- W3007765705 cites W1983025701 @default.
- W3007765705 cites W1988420953 @default.
- W3007765705 cites W1990611565 @default.
- W3007765705 cites W2004891103 @default.
- W3007765705 cites W2011504567 @default.
- W3007765705 cites W2019836907 @default.
- W3007765705 cites W2020641160 @default.
- W3007765705 cites W2021153764 @default.
- W3007765705 cites W2024165284 @default.
- W3007765705 cites W2031627503 @default.
- W3007765705 cites W2038206846 @default.
- W3007765705 cites W2039417141 @default.
- W3007765705 cites W2040297119 @default.
- W3007765705 cites W2044794662 @default.
- W3007765705 cites W2047493229 @default.
- W3007765705 cites W2064675550 @default.
- W3007765705 cites W2073795924 @default.
- W3007765705 cites W2074108366 @default.
- W3007765705 cites W2075407851 @default.
- W3007765705 cites W2079662306 @default.
- W3007765705 cites W2083316861 @default.
- W3007765705 cites W2087238274 @default.
- W3007765705 cites W2094350745 @default.
- W3007765705 cites W2097498150 @default.
- W3007765705 cites W2109563136 @default.
- W3007765705 cites W2145039203 @default.
- W3007765705 cites W2150010190 @default.
- W3007765705 cites W2153919224 @default.
- W3007765705 cites W2163150789 @default.
- W3007765705 cites W2163246442 @default.
- W3007765705 cites W2165992156 @default.
- W3007765705 cites W2169481445 @default.
- W3007765705 cites W2789371837 @default.
- W3007765705 cites W2793811777 @default.
- W3007765705 cites W2793820729 @default.
- W3007765705 cites W2978273467 @default.
- W3007765705 cites W4246587917 @default.
- W3007765705 doi "https://doi.org/10.1080/21680566.2020.1732247" @default.
- W3007765705 hasPublicationYear "2020" @default.
- W3007765705 type Work @default.
- W3007765705 sameAs 3007765705 @default.
- W3007765705 citedByCount "16" @default.
- W3007765705 countsByYear W30077657052020 @default.
- W3007765705 countsByYear W30077657052021 @default.
- W3007765705 countsByYear W30077657052022 @default.
- W3007765705 countsByYear W30077657052023 @default.
- W3007765705 crossrefType "journal-article" @default.
- W3007765705 hasAuthorship W3007765705A5005657243 @default.
- W3007765705 hasAuthorship W3007765705A5021302609 @default.
- W3007765705 hasAuthorship W3007765705A5060972658 @default.
- W3007765705 hasAuthorship W3007765705A5081146104 @default.
- W3007765705 hasConcept C11413529 @default.
- W3007765705 hasConcept C119857082 @default.
- W3007765705 hasConcept C124101348 @default.
- W3007765705 hasConcept C127413603 @default.
- W3007765705 hasConcept C154945302 @default.
- W3007765705 hasConcept C155281189 @default.
- W3007765705 hasConcept C183373512 @default.
- W3007765705 hasConcept C202444582 @default.
- W3007765705 hasConcept C22212356 @default.
- W3007765705 hasConcept C2780801425 @default.
- W3007765705 hasConcept C31258907 @default.
- W3007765705 hasConcept C33923547 @default.
- W3007765705 hasConcept C41008148 @default.
- W3007765705 hasConcept C9357733 @default.
- W3007765705 hasConceptScore W3007765705C11413529 @default.
- W3007765705 hasConceptScore W3007765705C119857082 @default.
- W3007765705 hasConceptScore W3007765705C124101348 @default.
- W3007765705 hasConceptScore W3007765705C127413603 @default.
- W3007765705 hasConceptScore W3007765705C154945302 @default.
- W3007765705 hasConceptScore W3007765705C155281189 @default.
- W3007765705 hasConceptScore W3007765705C183373512 @default.
- W3007765705 hasConceptScore W3007765705C202444582 @default.
- W3007765705 hasConceptScore W3007765705C22212356 @default.
- W3007765705 hasConceptScore W3007765705C2780801425 @default.
- W3007765705 hasConceptScore W3007765705C31258907 @default.
- W3007765705 hasConceptScore W3007765705C33923547 @default.
- W3007765705 hasConceptScore W3007765705C41008148 @default.
- W3007765705 hasConceptScore W3007765705C9357733 @default.
- W3007765705 hasFunder F4320321001 @default.