Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007768471> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W3007768471 abstract "169 Background: Although the survival outcomes for patients with mCSPC has improved over the last 5 years, disease remains universally fatal even with improved therapies. Currently, genomic information from the tumor is not taken into account for treatment selection and prognostication. AI is increasingly being used in clinical cancer genomics research. Probabilistic Graphical Models (PGMs) are AI algorithms that capture multivariate, multi-level dependencies in complex patterns in large datasets while retaining human interpretability. We hypothesize that PGMs can establish correlation of baseline somatic genomic alteration with poor survival outcomes in mCSPC. Methods: Eligible men had new mCSPC starting systemic therapy and had tumor genomic profiling done through a CLIA certified lab. Gene alterations with known pathogenicity were grouped into canonical pathways. Multilevel associations between survival, clinical variables (including baseline PSA, Gleason ≥ 8, and visceral metastasis), and genomic signatures (PI3K/AKT/mTOR, HRR, G1/S Cell Cycle, SPOP, TP53, WNT, and MYC) were assessed using a Bayesian Network (BN), and confidence intervals were estimated by bootstrapping. A Kaplan-Meier (KM) survival analysis was performed independently to support the results generated by the BN. Results: Among all variables, only genomic alterations in TP53 and the G1/S pathway were significantly associated with poor overall survival by BN analysis. KM analysis showed concordant results for TP53 (median OS, altered 50 mos vswild-type 84 mos; HR=2.79, 95% CI 1.63 – 4.80; P=0.0002) and G1/S (median OS altered 23 mos vswild-type 73 mos; HR=8.21, 95% CI 3.40 – 19.86; P<0.0001). Conclusions: These hypothesis-generating data reveal genomic signatures associated with poor survival in mCSPC patients. Our results, after external validation, may aid with counseling and treatment selection, as well as patient stratification in future trials in mCSPC." @default.
- W3007768471 created "2020-03-06" @default.
- W3007768471 creator A5017968102 @default.
- W3007768471 creator A5022744341 @default.
- W3007768471 creator A5034103357 @default.
- W3007768471 creator A5055269586 @default.
- W3007768471 creator A5060051204 @default.
- W3007768471 creator A5080507578 @default.
- W3007768471 creator A5082022607 @default.
- W3007768471 creator A5083693705 @default.
- W3007768471 date "2020-02-20" @default.
- W3007768471 modified "2023-09-23" @default.
- W3007768471 title "Identification of genomic alterations in signaling pathways associated with poor survival in newly diagnosed metastatic prostate cancer (mCSPC) using artificial intelligence (AI)." @default.
- W3007768471 doi "https://doi.org/10.1200/jco.2020.38.6_suppl.169" @default.
- W3007768471 hasPublicationYear "2020" @default.
- W3007768471 type Work @default.
- W3007768471 sameAs 3007768471 @default.
- W3007768471 citedByCount "0" @default.
- W3007768471 crossrefType "journal-article" @default.
- W3007768471 hasAuthorship W3007768471A5017968102 @default.
- W3007768471 hasAuthorship W3007768471A5022744341 @default.
- W3007768471 hasAuthorship W3007768471A5034103357 @default.
- W3007768471 hasAuthorship W3007768471A5055269586 @default.
- W3007768471 hasAuthorship W3007768471A5060051204 @default.
- W3007768471 hasAuthorship W3007768471A5080507578 @default.
- W3007768471 hasAuthorship W3007768471A5082022607 @default.
- W3007768471 hasAuthorship W3007768471A5083693705 @default.
- W3007768471 hasConcept C104317684 @default.
- W3007768471 hasConcept C10515644 @default.
- W3007768471 hasConcept C121608353 @default.
- W3007768471 hasConcept C126322002 @default.
- W3007768471 hasConcept C137620995 @default.
- W3007768471 hasConcept C143998085 @default.
- W3007768471 hasConcept C2777609662 @default.
- W3007768471 hasConcept C2779013556 @default.
- W3007768471 hasConcept C2780192828 @default.
- W3007768471 hasConcept C54355233 @default.
- W3007768471 hasConcept C62478195 @default.
- W3007768471 hasConcept C71924100 @default.
- W3007768471 hasConcept C86554907 @default.
- W3007768471 hasConcept C86803240 @default.
- W3007768471 hasConceptScore W3007768471C104317684 @default.
- W3007768471 hasConceptScore W3007768471C10515644 @default.
- W3007768471 hasConceptScore W3007768471C121608353 @default.
- W3007768471 hasConceptScore W3007768471C126322002 @default.
- W3007768471 hasConceptScore W3007768471C137620995 @default.
- W3007768471 hasConceptScore W3007768471C143998085 @default.
- W3007768471 hasConceptScore W3007768471C2777609662 @default.
- W3007768471 hasConceptScore W3007768471C2779013556 @default.
- W3007768471 hasConceptScore W3007768471C2780192828 @default.
- W3007768471 hasConceptScore W3007768471C54355233 @default.
- W3007768471 hasConceptScore W3007768471C62478195 @default.
- W3007768471 hasConceptScore W3007768471C71924100 @default.
- W3007768471 hasConceptScore W3007768471C86554907 @default.
- W3007768471 hasConceptScore W3007768471C86803240 @default.
- W3007768471 hasLocation W30077684711 @default.
- W3007768471 hasOpenAccess W3007768471 @default.
- W3007768471 hasPrimaryLocation W30077684711 @default.
- W3007768471 hasRelatedWork W17821756 @default.
- W3007768471 hasRelatedWork W1837200 @default.
- W3007768471 hasRelatedWork W19685276 @default.
- W3007768471 hasRelatedWork W20046256 @default.
- W3007768471 hasRelatedWork W4180868 @default.
- W3007768471 hasRelatedWork W5850796 @default.
- W3007768471 hasRelatedWork W6947022 @default.
- W3007768471 hasRelatedWork W7939232 @default.
- W3007768471 hasRelatedWork W8008299 @default.
- W3007768471 hasRelatedWork W9861191 @default.
- W3007768471 isParatext "false" @default.
- W3007768471 isRetracted "false" @default.
- W3007768471 magId "3007768471" @default.
- W3007768471 workType "article" @default.