Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007790594> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3007790594 abstract "We propose a hybrid deep learning-based method, which includes a cycle consistent generative adversarial network (CycleGAN) and deep attention fully convolution network implemented by a U-Net (DAUnet), to perform volumetric multi-organ segmentation for pelvic computed tomography (CT). The proposed method first utilized CycleGAN to generate synthetic MRI (sMRI) to provide superior soft tissue contrast. Then, the proposed method fed the sMRI into the DAUnet to obtain the volumetric segmentation of bladder, prostate and rectum, simultaneously, via a multi-channel output. The deep attention strategy was introduced to retrieve the most relevant features to identify organ boundaries. Deep supervision was incorporated into the DAUnet to enhance the features’ discriminative ability. Segmented contours of a patient were obtained by feeding the CT image into the trained CycleGAN to generate sMRI, which was then fed to the trained DAUnet to generate the organ contours. A retrospective studied was performed with data sets from 45 patients with prostate cancer. The Dice similarity coefficient and mean surface distance indices for bladder, prostate, and rectum contours were 0.94, 0.47 mm; 0.86, 0.78 mm; and 0.89, 0.85 mm, respectively. The proposed network provides accurate and consistent prostate, bladder and rectum segmentation without the need of additional MRIs. With further evaluation and clinical implementation, this method has the potential to facilitate routine prostate-cancer radiotherapy treatment planning." @default.
- W3007790594 created "2020-03-06" @default.
- W3007790594 creator A5009731683 @default.
- W3007790594 creator A5011903902 @default.
- W3007790594 creator A5024852113 @default.
- W3007790594 creator A5026088869 @default.
- W3007790594 creator A5029644534 @default.
- W3007790594 creator A5030054597 @default.
- W3007790594 creator A5048786190 @default.
- W3007790594 creator A5049656223 @default.
- W3007790594 creator A5081519486 @default.
- W3007790594 date "2020-02-28" @default.
- W3007790594 modified "2023-10-05" @default.
- W3007790594 title "Multi-organ segmentation in pelvic CT images with CT-based synthetic MRI" @default.
- W3007790594 doi "https://doi.org/10.1117/12.2548470" @default.
- W3007790594 hasPublicationYear "2020" @default.
- W3007790594 type Work @default.
- W3007790594 sameAs 3007790594 @default.
- W3007790594 citedByCount "1" @default.
- W3007790594 countsByYear W30077905942023 @default.
- W3007790594 crossrefType "proceedings-article" @default.
- W3007790594 hasAuthorship W3007790594A5009731683 @default.
- W3007790594 hasAuthorship W3007790594A5011903902 @default.
- W3007790594 hasAuthorship W3007790594A5024852113 @default.
- W3007790594 hasAuthorship W3007790594A5026088869 @default.
- W3007790594 hasAuthorship W3007790594A5029644534 @default.
- W3007790594 hasAuthorship W3007790594A5030054597 @default.
- W3007790594 hasAuthorship W3007790594A5048786190 @default.
- W3007790594 hasAuthorship W3007790594A5049656223 @default.
- W3007790594 hasAuthorship W3007790594A5081519486 @default.
- W3007790594 hasConcept C108583219 @default.
- W3007790594 hasConcept C121608353 @default.
- W3007790594 hasConcept C124504099 @default.
- W3007790594 hasConcept C126322002 @default.
- W3007790594 hasConcept C126838900 @default.
- W3007790594 hasConcept C141071460 @default.
- W3007790594 hasConcept C153180895 @default.
- W3007790594 hasConcept C154945302 @default.
- W3007790594 hasConcept C162324750 @default.
- W3007790594 hasConcept C176217482 @default.
- W3007790594 hasConcept C21547014 @default.
- W3007790594 hasConcept C2776235491 @default.
- W3007790594 hasConcept C2780192828 @default.
- W3007790594 hasConcept C2781074409 @default.
- W3007790594 hasConcept C31972630 @default.
- W3007790594 hasConcept C41008148 @default.
- W3007790594 hasConcept C71924100 @default.
- W3007790594 hasConcept C89600930 @default.
- W3007790594 hasConcept C97931131 @default.
- W3007790594 hasConceptScore W3007790594C108583219 @default.
- W3007790594 hasConceptScore W3007790594C121608353 @default.
- W3007790594 hasConceptScore W3007790594C124504099 @default.
- W3007790594 hasConceptScore W3007790594C126322002 @default.
- W3007790594 hasConceptScore W3007790594C126838900 @default.
- W3007790594 hasConceptScore W3007790594C141071460 @default.
- W3007790594 hasConceptScore W3007790594C153180895 @default.
- W3007790594 hasConceptScore W3007790594C154945302 @default.
- W3007790594 hasConceptScore W3007790594C162324750 @default.
- W3007790594 hasConceptScore W3007790594C176217482 @default.
- W3007790594 hasConceptScore W3007790594C21547014 @default.
- W3007790594 hasConceptScore W3007790594C2776235491 @default.
- W3007790594 hasConceptScore W3007790594C2780192828 @default.
- W3007790594 hasConceptScore W3007790594C2781074409 @default.
- W3007790594 hasConceptScore W3007790594C31972630 @default.
- W3007790594 hasConceptScore W3007790594C41008148 @default.
- W3007790594 hasConceptScore W3007790594C71924100 @default.
- W3007790594 hasConceptScore W3007790594C89600930 @default.
- W3007790594 hasConceptScore W3007790594C97931131 @default.
- W3007790594 hasLocation W30077905941 @default.
- W3007790594 hasOpenAccess W3007790594 @default.
- W3007790594 hasPrimaryLocation W30077905941 @default.
- W3007790594 hasRelatedWork W1669643531 @default.
- W3007790594 hasRelatedWork W2110230079 @default.
- W3007790594 hasRelatedWork W2117664411 @default.
- W3007790594 hasRelatedWork W2117933325 @default.
- W3007790594 hasRelatedWork W2122581818 @default.
- W3007790594 hasRelatedWork W2159066190 @default.
- W3007790594 hasRelatedWork W2510758617 @default.
- W3007790594 hasRelatedWork W2739874619 @default.
- W3007790594 hasRelatedWork W2948658236 @default.
- W3007790594 hasRelatedWork W3102644505 @default.
- W3007790594 isParatext "false" @default.
- W3007790594 isRetracted "false" @default.
- W3007790594 magId "3007790594" @default.
- W3007790594 workType "article" @default.