Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007910591> ?p ?o ?g. }
- W3007910591 endingPage "162" @default.
- W3007910591 startingPage "143" @default.
- W3007910591 abstract "With the leveraging fields of data mining and artificial intelligence, the data is growing day by day in an exponential manner. In health care sector, huge amount of biomedical data are generated from online hospital management applications, online sites, biomedical devices and sensors, and from various other electronic devices in an innumerous manner. There is a huge demand in the health sector to store this data so that they can be analyzed for future predictions. The process involves storing of high dimensional data and also very high volume of data (“Big Data”), which later needs to be processed to extract the desired information. The important attributes of the data needs to be identified, and then a subset is to be generated which can help in training the prediction model classifiers. This big data needs to be preprocessed to eradicate the unrequited attributes, identifying the essential attributes, then filtering out the noise (irrelevant attributes) from it and minimize its size without affecting its quality, i.e. after filtrating the attributes, there should not be any required attribute missing which will affect the performance of the predictive models. This task of identifying patterns, identifying relevant attributes for prediction of diseases and selecting min. no. attributes from the huge data set so as to achieve the results from predictive models with minimum time and cost is very challenging and requires a lot of expertise. This book chapter explains the importance of feature selection and feature creation related to biomedical data. Actually first a set of features have to be created which will study the hidden behavior and patterns and these features will then in turn be used to identify patterns and assist in prediction of diseases. Feature identification is again a rigorous task and involves lot of expertise. This chapter gives an insight into why feature selection is essential in designing the smart healthcare predictive models for real time data." @default.
- W3007910591 created "2020-03-06" @default.
- W3007910591 creator A5051307523 @default.
- W3007910591 creator A5067352736 @default.
- W3007910591 creator A5076382765 @default.
- W3007910591 date "2020-01-01" @default.
- W3007910591 modified "2023-10-14" @default.
- W3007910591 title "Feature Selection: Role in Designing Smart Healthcare Models" @default.
- W3007910591 cites W1493357981 @default.
- W3007910591 cites W1583700199 @default.
- W3007910591 cites W1595516555 @default.
- W3007910591 cites W1604548007 @default.
- W3007910591 cites W1850308234 @default.
- W3007910591 cites W1983575673 @default.
- W3007910591 cites W1990960780 @default.
- W3007910591 cites W1993495876 @default.
- W3007910591 cites W2044170702 @default.
- W3007910591 cites W2089497633 @default.
- W3007910591 cites W2132166479 @default.
- W3007910591 cites W2155423555 @default.
- W3007910591 cites W2166377462 @default.
- W3007910591 cites W2171263752 @default.
- W3007910591 cites W2470233764 @default.
- W3007910591 cites W2481757162 @default.
- W3007910591 cites W2512272949 @default.
- W3007910591 cites W2998622728 @default.
- W3007910591 cites W4237171445 @default.
- W3007910591 cites W4249247926 @default.
- W3007910591 cites W5983547 @default.
- W3007910591 doi "https://doi.org/10.1007/978-3-030-37551-5_9" @default.
- W3007910591 hasPublicationYear "2020" @default.
- W3007910591 type Work @default.
- W3007910591 sameAs 3007910591 @default.
- W3007910591 citedByCount "2" @default.
- W3007910591 countsByYear W30079105912023 @default.
- W3007910591 crossrefType "book-chapter" @default.
- W3007910591 hasAuthorship W3007910591A5051307523 @default.
- W3007910591 hasAuthorship W3007910591A5067352736 @default.
- W3007910591 hasAuthorship W3007910591A5076382765 @default.
- W3007910591 hasConcept C111472728 @default.
- W3007910591 hasConcept C111919701 @default.
- W3007910591 hasConcept C115961682 @default.
- W3007910591 hasConcept C119857082 @default.
- W3007910591 hasConcept C124101348 @default.
- W3007910591 hasConcept C127413603 @default.
- W3007910591 hasConcept C138885662 @default.
- W3007910591 hasConcept C148483581 @default.
- W3007910591 hasConcept C154945302 @default.
- W3007910591 hasConcept C177264268 @default.
- W3007910591 hasConcept C199360897 @default.
- W3007910591 hasConcept C201995342 @default.
- W3007910591 hasConcept C2522767166 @default.
- W3007910591 hasConcept C2776401178 @default.
- W3007910591 hasConcept C2779530757 @default.
- W3007910591 hasConcept C2780451532 @default.
- W3007910591 hasConcept C41008148 @default.
- W3007910591 hasConcept C41895202 @default.
- W3007910591 hasConcept C45804977 @default.
- W3007910591 hasConcept C58489278 @default.
- W3007910591 hasConcept C75684735 @default.
- W3007910591 hasConcept C81917197 @default.
- W3007910591 hasConcept C98045186 @default.
- W3007910591 hasConcept C99498987 @default.
- W3007910591 hasConceptScore W3007910591C111472728 @default.
- W3007910591 hasConceptScore W3007910591C111919701 @default.
- W3007910591 hasConceptScore W3007910591C115961682 @default.
- W3007910591 hasConceptScore W3007910591C119857082 @default.
- W3007910591 hasConceptScore W3007910591C124101348 @default.
- W3007910591 hasConceptScore W3007910591C127413603 @default.
- W3007910591 hasConceptScore W3007910591C138885662 @default.
- W3007910591 hasConceptScore W3007910591C148483581 @default.
- W3007910591 hasConceptScore W3007910591C154945302 @default.
- W3007910591 hasConceptScore W3007910591C177264268 @default.
- W3007910591 hasConceptScore W3007910591C199360897 @default.
- W3007910591 hasConceptScore W3007910591C201995342 @default.
- W3007910591 hasConceptScore W3007910591C2522767166 @default.
- W3007910591 hasConceptScore W3007910591C2776401178 @default.
- W3007910591 hasConceptScore W3007910591C2779530757 @default.
- W3007910591 hasConceptScore W3007910591C2780451532 @default.
- W3007910591 hasConceptScore W3007910591C41008148 @default.
- W3007910591 hasConceptScore W3007910591C41895202 @default.
- W3007910591 hasConceptScore W3007910591C45804977 @default.
- W3007910591 hasConceptScore W3007910591C58489278 @default.
- W3007910591 hasConceptScore W3007910591C75684735 @default.
- W3007910591 hasConceptScore W3007910591C81917197 @default.
- W3007910591 hasConceptScore W3007910591C98045186 @default.
- W3007910591 hasConceptScore W3007910591C99498987 @default.
- W3007910591 hasLocation W30079105911 @default.
- W3007910591 hasOpenAccess W3007910591 @default.
- W3007910591 hasPrimaryLocation W30079105911 @default.
- W3007910591 hasRelatedWork W2361218558 @default.
- W3007910591 hasRelatedWork W2365088826 @default.
- W3007910591 hasRelatedWork W2599424341 @default.
- W3007910591 hasRelatedWork W2734587838 @default.
- W3007910591 hasRelatedWork W2965318499 @default.
- W3007910591 hasRelatedWork W3014300295 @default.
- W3007910591 hasRelatedWork W3163334550 @default.
- W3007910591 hasRelatedWork W3200179079 @default.