Matches in SemOpenAlex for { <https://semopenalex.org/work/W3007942792> ?p ?o ?g. }
- W3007942792 endingPage "454" @default.
- W3007942792 startingPage "439" @default.
- W3007942792 abstract "Mutation-induced variation of protein-ligand binding affinity is the key to many genetic diseases and the emergence of drug resistance, and therefore predicting such mutation impacts is of great importance. In this work, we aim to predict the mutation impacts on protein-ligand binding affinity using efficient structure-based, computational methods.Relying on consolidated databases of experimentally determined data we characterize the affinity change upon mutation based on a number of local geometrical features and monitor such feature differences upon mutation during molecular dynamics (MD) simulations. The differences are quantified according to average difference, trajectory-wise distance or time-vary differences. Machine-learning methods are employed to predict the mutation impacts using the resulting conventional or time-series features. Predictions based on estimation of energy and based on investigation of molecular descriptors were conducted as benchmarks.Our method (machine-learning techniques using time-series features) outperformed the benchmark methods, especially in terms of the balanced F1 score. Particularly, deep-learning models led to the best prediction performance with distinct improvements in balanced F1 score and a sustained accuracy.Our work highlights the effectiveness of the characterization of affinity change upon mutations. Furthermore, deep-learning techniques are well designed for handling the extracted time-series features. This study can lead to a deeper understanding of mutation-induced diseases and resistance, and further guide the development of innovative drug design." @default.
- W3007942792 created "2020-03-06" @default.
- W3007942792 creator A5005150832 @default.
- W3007942792 creator A5013151488 @default.
- W3007942792 creator A5030129372 @default.
- W3007942792 creator A5032665783 @default.
- W3007942792 creator A5033136947 @default.
- W3007942792 date "2020-01-01" @default.
- W3007942792 modified "2023-10-09" @default.
- W3007942792 title "Predicting the impacts of mutations on protein-ligand binding affinity based on molecular dynamics simulations and machine learning methods" @default.
- W3007942792 cites W1548178570 @default.
- W3007942792 cites W1973430539 @default.
- W3007942792 cites W1974483352 @default.
- W3007942792 cites W1979401635 @default.
- W3007942792 cites W1990678622 @default.
- W3007942792 cites W1994999769 @default.
- W3007942792 cites W2002052142 @default.
- W3007942792 cites W2004822259 @default.
- W3007942792 cites W2018112724 @default.
- W3007942792 cites W2034392868 @default.
- W3007942792 cites W2042888958 @default.
- W3007942792 cites W2046799991 @default.
- W3007942792 cites W2047672715 @default.
- W3007942792 cites W2050248093 @default.
- W3007942792 cites W2086920981 @default.
- W3007942792 cites W2095719702 @default.
- W3007942792 cites W2099672241 @default.
- W3007942792 cites W2105103540 @default.
- W3007942792 cites W2112702439 @default.
- W3007942792 cites W2117458899 @default.
- W3007942792 cites W2125359610 @default.
- W3007942792 cites W2125838338 @default.
- W3007942792 cites W2128629409 @default.
- W3007942792 cites W2129187661 @default.
- W3007942792 cites W2130859704 @default.
- W3007942792 cites W2132629607 @default.
- W3007942792 cites W2134574317 @default.
- W3007942792 cites W2139035697 @default.
- W3007942792 cites W2143612262 @default.
- W3007942792 cites W2143720865 @default.
- W3007942792 cites W2145957695 @default.
- W3007942792 cites W2150192011 @default.
- W3007942792 cites W2152800101 @default.
- W3007942792 cites W2157807259 @default.
- W3007942792 cites W2159769151 @default.
- W3007942792 cites W2166478478 @default.
- W3007942792 cites W2202155158 @default.
- W3007942792 cites W2281688700 @default.
- W3007942792 cites W2313116527 @default.
- W3007942792 cites W2340506278 @default.
- W3007942792 cites W2475308546 @default.
- W3007942792 cites W2510837837 @default.
- W3007942792 cites W2558879065 @default.
- W3007942792 cites W2565516711 @default.
- W3007942792 cites W2592364803 @default.
- W3007942792 cites W2615841538 @default.
- W3007942792 cites W2736835377 @default.
- W3007942792 cites W2794498378 @default.
- W3007942792 cites W2916078022 @default.
- W3007942792 cites W2951718918 @default.
- W3007942792 cites W35321974 @default.
- W3007942792 cites W4249920046 @default.
- W3007942792 doi "https://doi.org/10.1016/j.csbj.2020.02.007" @default.
- W3007942792 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7052406" @default.
- W3007942792 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32153730" @default.
- W3007942792 hasPublicationYear "2020" @default.
- W3007942792 type Work @default.
- W3007942792 sameAs 3007942792 @default.
- W3007942792 citedByCount "34" @default.
- W3007942792 countsByYear W30079427922020 @default.
- W3007942792 countsByYear W30079427922021 @default.
- W3007942792 countsByYear W30079427922022 @default.
- W3007942792 countsByYear W30079427922023 @default.
- W3007942792 crossrefType "journal-article" @default.
- W3007942792 hasAuthorship W3007942792A5005150832 @default.
- W3007942792 hasAuthorship W3007942792A5013151488 @default.
- W3007942792 hasAuthorship W3007942792A5030129372 @default.
- W3007942792 hasAuthorship W3007942792A5032665783 @default.
- W3007942792 hasAuthorship W3007942792A5033136947 @default.
- W3007942792 hasBestOaLocation W30079427921 @default.
- W3007942792 hasConcept C104317684 @default.
- W3007942792 hasConcept C119857082 @default.
- W3007942792 hasConcept C13280743 @default.
- W3007942792 hasConcept C138885662 @default.
- W3007942792 hasConcept C147597530 @default.
- W3007942792 hasConcept C154945302 @default.
- W3007942792 hasConcept C164126121 @default.
- W3007942792 hasConcept C164923092 @default.
- W3007942792 hasConcept C185592680 @default.
- W3007942792 hasConcept C185798385 @default.
- W3007942792 hasConcept C205649164 @default.
- W3007942792 hasConcept C2776401178 @default.
- W3007942792 hasConcept C41008148 @default.
- W3007942792 hasConcept C41895202 @default.
- W3007942792 hasConcept C501734568 @default.
- W3007942792 hasConcept C54355233 @default.
- W3007942792 hasConcept C59593255 @default.
- W3007942792 hasConcept C70721500 @default.