Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008021512> ?p ?o ?g. }
- W3008021512 endingPage "100123" @default.
- W3008021512 startingPage "100123" @default.
- W3008021512 abstract "Accurate clearance time prediction for road incident would be helpful to evaluate the incident impacting range and provide route guiding strategy according to the predicted results, and thus reduce the travel delays caused by incidents. Currently, a number of approaches have been developed for predicting incident clearance time and investigating the effects of influential factors. Statistical and machine learning methods are the two major methodological approaches. This study aims to make a methodology review for these methods by comprehensively examining their performance in incident clearance time prediction, especially, when omitted variables present significant impacts on selected variables. Specifically, we consider four widely used statistical models: Accelerated Failure Time (AFT) model, Quantile Regression (QR) model, Finite Mixture (FM) model, and Random Parameters Hazard-Based Duration (RPHD) model, and four machine learning models: K-Nearest Neighbor (KNN) model, Support Vector Machine (SVM) model, Back Propagation Neural Network (BPNN) model, and Random Forest (RF) model as candidates. Moreover, the abilities of these methods in uncovering the underlying causality (explaining the causal effects of significant influential factors on clearance time) are also investigated. Incident clearance time data was collected on freeway road sections in Seattle, Washington State from 2009 to 2011. The conclusions can be summarized as follows: 1) the RF model and RPHD model outperform the other three models in data fitting and model prediction in their respective methodological categories; 2) three “heterogeneity” methods including RPHD, FM and QR outperform machine learning methods in model prediction as measured by MAPE; 3) machine learning methods perform stably in model prediction relative to the statistical methods; 4) incident type and lane closure type present significant effects on incident clearance time in all eight selected models." @default.
- W3008021512 created "2020-03-06" @default.
- W3008021512 creator A5010776860 @default.
- W3008021512 creator A5016357519 @default.
- W3008021512 creator A5028977876 @default.
- W3008021512 creator A5031038629 @default.
- W3008021512 creator A5070288240 @default.
- W3008021512 creator A5071113267 @default.
- W3008021512 creator A5077763192 @default.
- W3008021512 date "2020-09-01" @default.
- W3008021512 modified "2023-10-12" @default.
- W3008021512 title "Statistical and machine-learning methods for clearance time prediction of road incidents: A methodology review" @default.
- W3008021512 cites W1498436455 @default.
- W3008021512 cites W1529414135 @default.
- W3008021512 cites W1662941239 @default.
- W3008021512 cites W1920524037 @default.
- W3008021512 cites W1964259136 @default.
- W3008021512 cites W1967444754 @default.
- W3008021512 cites W1969372462 @default.
- W3008021512 cites W197184986 @default.
- W3008021512 cites W1975185440 @default.
- W3008021512 cites W1975286873 @default.
- W3008021512 cites W1980399291 @default.
- W3008021512 cites W1981177109 @default.
- W3008021512 cites W2008909284 @default.
- W3008021512 cites W2010039425 @default.
- W3008021512 cites W2035481685 @default.
- W3008021512 cites W2038648836 @default.
- W3008021512 cites W2040794788 @default.
- W3008021512 cites W2042741039 @default.
- W3008021512 cites W2051350735 @default.
- W3008021512 cites W2056425734 @default.
- W3008021512 cites W2080116736 @default.
- W3008021512 cites W2087660514 @default.
- W3008021512 cites W2092568949 @default.
- W3008021512 cites W2098397175 @default.
- W3008021512 cites W2098642267 @default.
- W3008021512 cites W2122111042 @default.
- W3008021512 cites W2135310819 @default.
- W3008021512 cites W2151744441 @default.
- W3008021512 cites W2152938093 @default.
- W3008021512 cites W2160255263 @default.
- W3008021512 cites W2169556851 @default.
- W3008021512 cites W2285483346 @default.
- W3008021512 cites W2326119565 @default.
- W3008021512 cites W2343811890 @default.
- W3008021512 cites W2505198155 @default.
- W3008021512 cites W2547561911 @default.
- W3008021512 cites W2567881713 @default.
- W3008021512 cites W2588462097 @default.
- W3008021512 cites W2614954172 @default.
- W3008021512 cites W2750077433 @default.
- W3008021512 cites W2750591756 @default.
- W3008021512 cites W2765174074 @default.
- W3008021512 cites W2770810810 @default.
- W3008021512 cites W2789557540 @default.
- W3008021512 cites W2805291027 @default.
- W3008021512 cites W2810456310 @default.
- W3008021512 cites W2896854717 @default.
- W3008021512 cites W2899037650 @default.
- W3008021512 cites W2911964244 @default.
- W3008021512 cites W2945476434 @default.
- W3008021512 cites W2973215173 @default.
- W3008021512 cites W2977939360 @default.
- W3008021512 cites W2984332092 @default.
- W3008021512 cites W2995118319 @default.
- W3008021512 cites W3000998105 @default.
- W3008021512 cites W4239510810 @default.
- W3008021512 cites W622056906 @default.
- W3008021512 doi "https://doi.org/10.1016/j.amar.2020.100123" @default.
- W3008021512 hasPublicationYear "2020" @default.
- W3008021512 type Work @default.
- W3008021512 sameAs 3008021512 @default.
- W3008021512 citedByCount "54" @default.
- W3008021512 countsByYear W30080215122020 @default.
- W3008021512 countsByYear W30080215122021 @default.
- W3008021512 countsByYear W30080215122022 @default.
- W3008021512 countsByYear W30080215122023 @default.
- W3008021512 crossrefType "journal-article" @default.
- W3008021512 hasAuthorship W3008021512A5010776860 @default.
- W3008021512 hasAuthorship W3008021512A5016357519 @default.
- W3008021512 hasAuthorship W3008021512A5028977876 @default.
- W3008021512 hasAuthorship W3008021512A5031038629 @default.
- W3008021512 hasAuthorship W3008021512A5070288240 @default.
- W3008021512 hasAuthorship W3008021512A5071113267 @default.
- W3008021512 hasAuthorship W3008021512A5077763192 @default.
- W3008021512 hasConcept C114289077 @default.
- W3008021512 hasConcept C119857082 @default.
- W3008021512 hasConcept C12267149 @default.
- W3008021512 hasConcept C127413603 @default.
- W3008021512 hasConcept C146978453 @default.
- W3008021512 hasConcept C154945302 @default.
- W3008021512 hasConcept C169258074 @default.
- W3008021512 hasConcept C204323151 @default.
- W3008021512 hasConcept C41008148 @default.
- W3008021512 hasConcept C45804977 @default.
- W3008021512 hasConcept C50644808 @default.
- W3008021512 hasConceptScore W3008021512C114289077 @default.