Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008115128> ?p ?o ?g. }
- W3008115128 endingPage "1360" @default.
- W3008115128 startingPage "1341" @default.
- W3008115128 abstract "Recent advancements in perception for autonomous driving are driven by deep learning. In order to achieve robust and accurate scene understanding, autonomous vehicles are usually equipped with different sensors (e.g. cameras, LiDARs, Radars), and multiple sensing modalities can be fused to exploit their complementary properties. In this context, many methods have been proposed for deep multi-modal perception problems. However, there is no general guideline for network architecture design, and questions of what to fuse, when to fuse, and how to fuse remain open. This review paper attempts to systematically summarize methodologies and discuss challenges for deep multi-modal object detection and semantic segmentation in autonomous driving. To this end, we first provide an overview of on-board sensors on test vehicles, open datasets, and background information for object detection and semantic segmentation in autonomous driving research. We then summarize the fusion methodologies and discuss challenges and open questions. In the appendix, we provide tables that summarize topics and methods. We also provide an interactive online platform to navigate each reference: https://boschresearch.github.io/multimodalperception/." @default.
- W3008115128 created "2020-03-06" @default.
- W3008115128 creator A5019722553 @default.
- W3008115128 creator A5032375639 @default.
- W3008115128 creator A5038655692 @default.
- W3008115128 creator A5043455894 @default.
- W3008115128 creator A5046877330 @default.
- W3008115128 creator A5071201024 @default.
- W3008115128 creator A5080879616 @default.
- W3008115128 creator A5085054529 @default.
- W3008115128 date "2021-03-01" @default.
- W3008115128 modified "2023-10-14" @default.
- W3008115128 title "Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges" @default.
- W3008115128 cites W1507506748 @default.
- W3008115128 cites W1536680647 @default.
- W3008115128 cites W1565402342 @default.
- W3008115128 cites W1903029394 @default.
- W3008115128 cites W1910108985 @default.
- W3008115128 cites W1971259134 @default.
- W3008115128 cites W1982696459 @default.
- W3008115128 cites W2031489346 @default.
- W3008115128 cites W2032924574 @default.
- W3008115128 cites W2034626455 @default.
- W3008115128 cites W2043642041 @default.
- W3008115128 cites W2045531847 @default.
- W3008115128 cites W2047030012 @default.
- W3008115128 cites W2047229728 @default.
- W3008115128 cites W2097117768 @default.
- W3008115128 cites W2102605133 @default.
- W3008115128 cites W2103328396 @default.
- W3008115128 cites W2109255472 @default.
- W3008115128 cites W2111051539 @default.
- W3008115128 cites W2115579991 @default.
- W3008115128 cites W2117539524 @default.
- W3008115128 cites W2119112357 @default.
- W3008115128 cites W2124592697 @default.
- W3008115128 cites W2150066425 @default.
- W3008115128 cites W2150884987 @default.
- W3008115128 cites W2151834591 @default.
- W3008115128 cites W2155695215 @default.
- W3008115128 cites W2165698076 @default.
- W3008115128 cites W2194775991 @default.
- W3008115128 cites W2209990155 @default.
- W3008115128 cites W2327992289 @default.
- W3008115128 cites W2329472310 @default.
- W3008115128 cites W2334286570 @default.
- W3008115128 cites W2340897893 @default.
- W3008115128 cites W2343061342 @default.
- W3008115128 cites W2406067508 @default.
- W3008115128 cites W2412782625 @default.
- W3008115128 cites W2416791088 @default.
- W3008115128 cites W2431874326 @default.
- W3008115128 cites W2468368736 @default.
- W3008115128 cites W2479866714 @default.
- W3008115128 cites W2487365028 @default.
- W3008115128 cites W2497039038 @default.
- W3008115128 cites W2512944926 @default.
- W3008115128 cites W2513079078 @default.
- W3008115128 cites W2519537448 @default.
- W3008115128 cites W2549125172 @default.
- W3008115128 cites W2555618208 @default.
- W3008115128 cites W2557728737 @default.
- W3008115128 cites W2558027072 @default.
- W3008115128 cites W2558294288 @default.
- W3008115128 cites W2559545830 @default.
- W3008115128 cites W2560544142 @default.
- W3008115128 cites W2560609797 @default.
- W3008115128 cites W2562137921 @default.
- W3008115128 cites W2566683698 @default.
- W3008115128 cites W2567575208 @default.
- W3008115128 cites W2580683366 @default.
- W3008115128 cites W2583716065 @default.
- W3008115128 cites W2584890299 @default.
- W3008115128 cites W2596750703 @default.
- W3008115128 cites W2610165754 @default.
- W3008115128 cites W2615011300 @default.
- W3008115128 cites W2726204845 @default.
- W3008115128 cites W2728829052 @default.
- W3008115128 cites W2737202447 @default.
- W3008115128 cites W2739253758 @default.
- W3008115128 cites W2739581014 @default.
- W3008115128 cites W2740418457 @default.
- W3008115128 cites W2741069557 @default.
- W3008115128 cites W2751746637 @default.
- W3008115128 cites W2760327656 @default.
- W3008115128 cites W2766228259 @default.
- W3008115128 cites W2767014298 @default.
- W3008115128 cites W2767290858 @default.
- W3008115128 cites W2774434529 @default.
- W3008115128 cites W2774756930 @default.
- W3008115128 cites W2774839435 @default.
- W3008115128 cites W2781228439 @default.
- W3008115128 cites W2782972562 @default.
- W3008115128 cites W2788097838 @default.
- W3008115128 cites W2788388592 @default.
- W3008115128 cites W2789621390 @default.
- W3008115128 cites W2790504560 @default.
- W3008115128 cites W2791003324 @default.