Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008121346> ?p ?o ?g. }
- W3008121346 endingPage "114624" @default.
- W3008121346 startingPage "114624" @default.
- W3008121346 abstract "Window plays an essential role in the indoor environment and building energy consumption. As an innovative building integrated photovoltaic (BIPV) window, the vacuum PV glazing was proposed to provide excellent thermal performance and utilize renewable energy. However, the daylighting performance of the vacuum PV glazing and the effect on energy consumption have not been thoroughly investigated. Most whole building energy simulation used the daylighting calculation based on Daylight Factor (DF) method, which fails to address realistic calculation for direct sunlight through complex glazing materials. In this study, a RADIANCE model was developed and validated to adequately represent the daylight behaviour of a vacuum cadmium telluride photovoltaic glazing with a three-layer structure. However, RADIANCE will consume too many computational resources for a whole year simulation. Therefore, an artificial neuron network (ANN) model was trained based on the weather conditions and the RADIANCE simulation results to predict the interior illuminance. Subsequently, a preprocessing coupling method is proposed to determine the lighting consumption of a typical office with the vacuum PV glazing. The performance evaluation of the ANN model indicates that it can predict the illuminance level with higher accuracy than the daylighting calculation methods in EnergyPlus. Therefore, the ANN model can adequately address the complex daylighting response of the vacuum PV glazing. The proposed coupling method showed a more reliable outcome than the simulations sole with EnergyPlus. Furthermore, the computational cost can be reduced dramatically by the ANN daylighting prediction model in comparison with the RADIANCE model. Compared with the lighting consumption determined by the ANN-based coupling method, the two approaches in EnergyPlus, the split-flux method and the DElight method, tend to underestimate the lighting consumption by 5.3% and 9.7%, respectively." @default.
- W3008121346 created "2020-03-06" @default.
- W3008121346 creator A5024872678 @default.
- W3008121346 creator A5034011852 @default.
- W3008121346 creator A5054686043 @default.
- W3008121346 creator A5061379759 @default.
- W3008121346 date "2020-04-01" @default.
- W3008121346 modified "2023-10-16" @default.
- W3008121346 title "Coupling an artificial neuron network daylighting model and building energy simulation for vacuum photovoltaic glazing" @default.
- W3008121346 cites W1640478051 @default.
- W3008121346 cites W1966999326 @default.
- W3008121346 cites W1973289822 @default.
- W3008121346 cites W1980894238 @default.
- W3008121346 cites W1982441552 @default.
- W3008121346 cites W1984472853 @default.
- W3008121346 cites W2005354572 @default.
- W3008121346 cites W2008804447 @default.
- W3008121346 cites W2015295232 @default.
- W3008121346 cites W2021841569 @default.
- W3008121346 cites W2033065921 @default.
- W3008121346 cites W2036364504 @default.
- W3008121346 cites W2040995281 @default.
- W3008121346 cites W2061048804 @default.
- W3008121346 cites W2063527801 @default.
- W3008121346 cites W2079264523 @default.
- W3008121346 cites W2083865869 @default.
- W3008121346 cites W2087060283 @default.
- W3008121346 cites W2088874310 @default.
- W3008121346 cites W2091040489 @default.
- W3008121346 cites W2092085886 @default.
- W3008121346 cites W2159315107 @default.
- W3008121346 cites W2191592481 @default.
- W3008121346 cites W2221854890 @default.
- W3008121346 cites W2231329627 @default.
- W3008121346 cites W2255880904 @default.
- W3008121346 cites W2345272244 @default.
- W3008121346 cites W2413859380 @default.
- W3008121346 cites W2587444606 @default.
- W3008121346 cites W2792771221 @default.
- W3008121346 cites W2887700062 @default.
- W3008121346 cites W2893054342 @default.
- W3008121346 cites W2916504680 @default.
- W3008121346 cites W2921806260 @default.
- W3008121346 cites W2946424223 @default.
- W3008121346 cites W320530393 @default.
- W3008121346 doi "https://doi.org/10.1016/j.apenergy.2020.114624" @default.
- W3008121346 hasPublicationYear "2020" @default.
- W3008121346 type Work @default.
- W3008121346 sameAs 3008121346 @default.
- W3008121346 citedByCount "22" @default.
- W3008121346 countsByYear W30081213462020 @default.
- W3008121346 countsByYear W30081213462021 @default.
- W3008121346 countsByYear W30081213462022 @default.
- W3008121346 countsByYear W30081213462023 @default.
- W3008121346 crossrefType "journal-article" @default.
- W3008121346 hasAuthorship W3008121346A5024872678 @default.
- W3008121346 hasAuthorship W3008121346A5034011852 @default.
- W3008121346 hasAuthorship W3008121346A5054686043 @default.
- W3008121346 hasAuthorship W3008121346A5061379759 @default.
- W3008121346 hasConcept C110455383 @default.
- W3008121346 hasConcept C119599485 @default.
- W3008121346 hasConcept C120665830 @default.
- W3008121346 hasConcept C121332964 @default.
- W3008121346 hasConcept C127413603 @default.
- W3008121346 hasConcept C13384339 @default.
- W3008121346 hasConcept C147176958 @default.
- W3008121346 hasConcept C149277555 @default.
- W3008121346 hasConcept C170154142 @default.
- W3008121346 hasConcept C171146098 @default.
- W3008121346 hasConcept C188573790 @default.
- W3008121346 hasConcept C23690007 @default.
- W3008121346 hasConcept C2776409380 @default.
- W3008121346 hasConcept C2780165032 @default.
- W3008121346 hasConcept C2982928256 @default.
- W3008121346 hasConcept C36365805 @default.
- W3008121346 hasConcept C39432304 @default.
- W3008121346 hasConcept C41008148 @default.
- W3008121346 hasConcept C41291067 @default.
- W3008121346 hasConcept C44154836 @default.
- W3008121346 hasConcept C53559285 @default.
- W3008121346 hasConceptScore W3008121346C110455383 @default.
- W3008121346 hasConceptScore W3008121346C119599485 @default.
- W3008121346 hasConceptScore W3008121346C120665830 @default.
- W3008121346 hasConceptScore W3008121346C121332964 @default.
- W3008121346 hasConceptScore W3008121346C127413603 @default.
- W3008121346 hasConceptScore W3008121346C13384339 @default.
- W3008121346 hasConceptScore W3008121346C147176958 @default.
- W3008121346 hasConceptScore W3008121346C149277555 @default.
- W3008121346 hasConceptScore W3008121346C170154142 @default.
- W3008121346 hasConceptScore W3008121346C171146098 @default.
- W3008121346 hasConceptScore W3008121346C188573790 @default.
- W3008121346 hasConceptScore W3008121346C23690007 @default.
- W3008121346 hasConceptScore W3008121346C2776409380 @default.
- W3008121346 hasConceptScore W3008121346C2780165032 @default.
- W3008121346 hasConceptScore W3008121346C2982928256 @default.
- W3008121346 hasConceptScore W3008121346C36365805 @default.
- W3008121346 hasConceptScore W3008121346C39432304 @default.
- W3008121346 hasConceptScore W3008121346C41008148 @default.