Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008229403> ?p ?o ?g. }
- W3008229403 endingPage "414" @default.
- W3008229403 startingPage "398" @default.
- W3008229403 abstract "Abstract The integration of pollution index of groundwater (PIG), multivariate statistical techniques including correlation matrix (CM), principal component analysis (PCA), cluster analysis (CA) and various ionic plots was applied to elucidate the influence of natural and anthropogenic inputs on groundwater chemistry and quality of the Kadava river basin. A total of 80 groundwater samples were collected and analysed for major ions during pre- and post-monsoon seasons of 2012. Analytical results inferred that Ca, Mg, Cl, SO4 and NO3 surpass the desirable limit (DL) and permissible limit (PL) of Bureau of Indian Standards (BIS) and the World Health Organization (WHO) in both the seasons. The elevated content of total dissolved solids (TDS), Cl, SO4, Mg, Na and NO3 is influenced by precipitation and agricultural dominance. PIG results inferred that 52.5 and 35%, 30 and 37.5%, 12.5 and 20%, 2.5 and 5% groundwater samples fall in insignificant, low, moderate and high pollution category (PC) in pre- and post-monsoon seasons, respectively. PC 1 confirms salinity controlled process due to high inputs of TDS, Ca, Mg, Na, Cl and SO4. Also, PC 2 suggests alkalinity influence by pH, CO3, HCO3 and F content. PIG and statistical techniques help to interpret the water quality data in an easier way." @default.
- W3008229403 created "2020-03-06" @default.
- W3008229403 creator A5003488391 @default.
- W3008229403 creator A5007271271 @default.
- W3008229403 creator A5020282042 @default.
- W3008229403 creator A5057821739 @default.
- W3008229403 creator A5065795775 @default.
- W3008229403 creator A5076343261 @default.
- W3008229403 date "2020-02-27" @default.
- W3008229403 modified "2023-10-03" @default.
- W3008229403 title "Study of groundwater contamination and drinking suitability in basaltic terrain of Maharashtra, India through PIG and multivariate statistical techniques" @default.
- W3008229403 cites W2004815595 @default.
- W3008229403 cites W2006061659 @default.
- W3008229403 cites W2010788711 @default.
- W3008229403 cites W2011567504 @default.
- W3008229403 cites W2015517939 @default.
- W3008229403 cites W2033668783 @default.
- W3008229403 cites W2033880818 @default.
- W3008229403 cites W2035289758 @default.
- W3008229403 cites W2037951355 @default.
- W3008229403 cites W2038587763 @default.
- W3008229403 cites W2045493271 @default.
- W3008229403 cites W2050935973 @default.
- W3008229403 cites W2053472491 @default.
- W3008229403 cites W2061413124 @default.
- W3008229403 cites W2078312307 @default.
- W3008229403 cites W2085868206 @default.
- W3008229403 cites W2088707547 @default.
- W3008229403 cites W2090268930 @default.
- W3008229403 cites W2096125289 @default.
- W3008229403 cites W2109798965 @default.
- W3008229403 cites W2150904292 @default.
- W3008229403 cites W2158532256 @default.
- W3008229403 cites W2494644043 @default.
- W3008229403 cites W2516144375 @default.
- W3008229403 cites W2545750502 @default.
- W3008229403 cites W2553351801 @default.
- W3008229403 cites W2588802021 @default.
- W3008229403 cites W2592699232 @default.
- W3008229403 cites W2613644264 @default.
- W3008229403 cites W2735355056 @default.
- W3008229403 cites W2740655641 @default.
- W3008229403 cites W2760220824 @default.
- W3008229403 cites W2783181589 @default.
- W3008229403 cites W2794565237 @default.
- W3008229403 cites W2800604825 @default.
- W3008229403 cites W2811190769 @default.
- W3008229403 cites W2883187510 @default.
- W3008229403 cites W2900775322 @default.
- W3008229403 cites W2901159814 @default.
- W3008229403 cites W2908363393 @default.
- W3008229403 cites W2909595410 @default.
- W3008229403 cites W2912130581 @default.
- W3008229403 cites W2921001345 @default.
- W3008229403 cites W2921910530 @default.
- W3008229403 cites W2989868906 @default.
- W3008229403 cites W4245363474 @default.
- W3008229403 doi "https://doi.org/10.2166/aqua.2020.108" @default.
- W3008229403 hasPublicationYear "2020" @default.
- W3008229403 type Work @default.
- W3008229403 sameAs 3008229403 @default.
- W3008229403 citedByCount "40" @default.
- W3008229403 countsByYear W30082294032020 @default.
- W3008229403 countsByYear W30082294032021 @default.
- W3008229403 countsByYear W30082294032022 @default.
- W3008229403 countsByYear W30082294032023 @default.
- W3008229403 crossrefType "journal-article" @default.
- W3008229403 hasAuthorship W3008229403A5003488391 @default.
- W3008229403 hasAuthorship W3008229403A5007271271 @default.
- W3008229403 hasAuthorship W3008229403A5020282042 @default.
- W3008229403 hasAuthorship W3008229403A5057821739 @default.
- W3008229403 hasAuthorship W3008229403A5065795775 @default.
- W3008229403 hasAuthorship W3008229403A5076343261 @default.
- W3008229403 hasBestOaLocation W30082294031 @default.
- W3008229403 hasConcept C105795698 @default.
- W3008229403 hasConcept C107872376 @default.
- W3008229403 hasConcept C111368507 @default.
- W3008229403 hasConcept C126645576 @default.
- W3008229403 hasConcept C127313418 @default.
- W3008229403 hasConcept C129360787 @default.
- W3008229403 hasConcept C129513315 @default.
- W3008229403 hasConcept C136996986 @default.
- W3008229403 hasConcept C153294291 @default.
- W3008229403 hasConcept C178790620 @default.
- W3008229403 hasConcept C185592680 @default.
- W3008229403 hasConcept C187320778 @default.
- W3008229403 hasConcept C18903297 @default.
- W3008229403 hasConcept C205649164 @default.
- W3008229403 hasConcept C27438332 @default.
- W3008229403 hasConcept C2780797713 @default.
- W3008229403 hasConcept C33923547 @default.
- W3008229403 hasConcept C39432304 @default.
- W3008229403 hasConcept C45812177 @default.
- W3008229403 hasConcept C521259446 @default.
- W3008229403 hasConcept C58640448 @default.
- W3008229403 hasConcept C76177295 @default.
- W3008229403 hasConcept C76886044 @default.
- W3008229403 hasConcept C86803240 @default.