Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008262892> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3008262892 endingPage "177" @default.
- W3008262892 startingPage "153" @default.
- W3008262892 abstract "Abstract Technologies in big data have improved the analysis of clinical information for better understanding diseases in order to provide more efficient diagnoses. An online healthcare system has created huge data by record maintaining, taking into account acceptable requirements and the patient’s care. These clinical records are in files that pose a challenge for data processing and finding relevant documents. In this work, we used a method that combines Statistical Topic Models, Language Models, and Natural Language Processing, in order to retrieve clinical records. On the contrary, for analyzing large clinical records in the form of documents, topic models are used to finding related clusters of disease patterns. Here, it is explored the decomposition of clinical record summaries into topics which enables the effective clustering of relevant documents based on the topic under study. Clinical documents selected in a topic-based approach give proper information to the users for better understanding and derive insights from the related data. In our proposed method, clustering-based semantic similarity topic modeling is used in order to summarize the clinical reports based on latent Dirichlet allocation (LDA) in a MapReduce framework. Automated unsupervised analysis of LDA models is used to identify different disease patterns and to rank topic significance. In this, topic and keyword re-ranking methods assist physicians to get improved information through the LDA-obtained topics. The experimental assessment confirmed the value of the used methods in clinical documents summarization." @default.
- W3008262892 created "2020-03-06" @default.
- W3008262892 creator A5024815664 @default.
- W3008262892 creator A5051383822 @default.
- W3008262892 creator A5056546246 @default.
- W3008262892 creator A5086034805 @default.
- W3008262892 date "2020-01-01" @default.
- W3008262892 modified "2023-10-06" @default.
- W3008262892 title "Machine learning analysis of topic modeling re-ranking of clinical records" @default.
- W3008262892 cites W1606710192 @default.
- W3008262892 cites W1902526473 @default.
- W3008262892 cites W2001082470 @default.
- W3008262892 cites W2001322210 @default.
- W3008262892 cites W2016127234 @default.
- W3008262892 cites W2030498706 @default.
- W3008262892 cites W2044936152 @default.
- W3008262892 cites W2047604680 @default.
- W3008262892 cites W2065180054 @default.
- W3008262892 cites W2086706273 @default.
- W3008262892 cites W2116405309 @default.
- W3008262892 cites W2126385963 @default.
- W3008262892 cites W2134731454 @default.
- W3008262892 cites W2147152072 @default.
- W3008262892 cites W2150769253 @default.
- W3008262892 cites W2152550237 @default.
- W3008262892 cites W2154022005 @default.
- W3008262892 cites W2157355837 @default.
- W3008262892 cites W2343760456 @default.
- W3008262892 cites W2407196064 @default.
- W3008262892 cites W2521579474 @default.
- W3008262892 cites W2963511515 @default.
- W3008262892 cites W4233135949 @default.
- W3008262892 cites W4244092800 @default.
- W3008262892 doi "https://doi.org/10.1016/b978-0-12-820781-9.00009-7" @default.
- W3008262892 hasPublicationYear "2020" @default.
- W3008262892 type Work @default.
- W3008262892 sameAs 3008262892 @default.
- W3008262892 citedByCount "1" @default.
- W3008262892 countsByYear W30082628922022 @default.
- W3008262892 crossrefType "book-chapter" @default.
- W3008262892 hasAuthorship W3008262892A5024815664 @default.
- W3008262892 hasAuthorship W3008262892A5051383822 @default.
- W3008262892 hasAuthorship W3008262892A5056546246 @default.
- W3008262892 hasAuthorship W3008262892A5086034805 @default.
- W3008262892 hasBestOaLocation W30082628922 @default.
- W3008262892 hasConcept C119857082 @default.
- W3008262892 hasConcept C154945302 @default.
- W3008262892 hasConcept C189430467 @default.
- W3008262892 hasConcept C204321447 @default.
- W3008262892 hasConcept C23123220 @default.
- W3008262892 hasConcept C41008148 @default.
- W3008262892 hasConceptScore W3008262892C119857082 @default.
- W3008262892 hasConceptScore W3008262892C154945302 @default.
- W3008262892 hasConceptScore W3008262892C189430467 @default.
- W3008262892 hasConceptScore W3008262892C204321447 @default.
- W3008262892 hasConceptScore W3008262892C23123220 @default.
- W3008262892 hasConceptScore W3008262892C41008148 @default.
- W3008262892 hasLocation W30082628921 @default.
- W3008262892 hasLocation W30082628922 @default.
- W3008262892 hasOpenAccess W3008262892 @default.
- W3008262892 hasPrimaryLocation W30082628921 @default.
- W3008262892 hasRelatedWork W1601713026 @default.
- W3008262892 hasRelatedWork W2144190808 @default.
- W3008262892 hasRelatedWork W2335663899 @default.
- W3008262892 hasRelatedWork W2366644548 @default.
- W3008262892 hasRelatedWork W2376314740 @default.
- W3008262892 hasRelatedWork W2384888906 @default.
- W3008262892 hasRelatedWork W2961085424 @default.
- W3008262892 hasRelatedWork W3107474891 @default.
- W3008262892 hasRelatedWork W4306674287 @default.
- W3008262892 hasRelatedWork W4224009465 @default.
- W3008262892 isParatext "false" @default.
- W3008262892 isRetracted "false" @default.
- W3008262892 magId "3008262892" @default.
- W3008262892 workType "book-chapter" @default.