Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008309516> ?p ?o ?g. }
- W3008309516 endingPage "106683" @default.
- W3008309516 startingPage "106683" @default.
- W3008309516 abstract "Abstract Accurate fault diagnosis is critical to ensure the safe and reliable operation of rotating machinery. Data-driven fault diagnosis techniques based on Deep Learning (DL) have recently gained increasing attention due to theirs powerful feature learning capacity. However, one of the critical challenges lies in how to embed domain diagnosis knowledge into DL to obtain suitable features that correlate well with the health conditions and to generate better predictors. In this paper, a novel DL-based fault diagnosis method, based on 2D map representations of Cyclic Spectral Coherence (CSCoh) and Convolutional Neural Networks (CNN), is proposed to improve the recognition performance of rolling element bearing faults. Firstly, the 2D CSCoh maps of vibration signals are estimated by cyclic spectral analysis to provide bearing discriminative patterns for specific type of faults. The motivation for using CSCoh-based preprocessing scheme is that the valuable health condition information can be revealed by exploiting the second-order cyclostationary behavior of bearing vibration signals. Thus, the difficulty of feature learning in deep diagnosis model is reduced by leveraging domain-related diagnosis knowledge. Secondly, a CNN model is constructed to learn high-level feature representations and conduct fault classification. More specifically, Group Normalization (GN) is employed in CNN to normalize the feature maps of network, which can reduce the internal covariant shift induced by data distribution discrepancy. The proposed method is tested and evaluated on two experimental datasets, including data category imbalances and data collected under different operating conditions. Experimental results demonstrate that the proposed method can achieve high diagnosis accuracy under different datasets and present better generalization ability, compared to state-of-the-art fault diagnosis techniques." @default.
- W3008309516 created "2020-03-06" @default.
- W3008309516 creator A5003913508 @default.
- W3008309516 creator A5006935730 @default.
- W3008309516 creator A5010684849 @default.
- W3008309516 creator A5064722162 @default.
- W3008309516 date "2020-06-01" @default.
- W3008309516 modified "2023-10-17" @default.
- W3008309516 title "A deep learning method for bearing fault diagnosis based on Cyclic Spectral Coherence and Convolutional Neural Networks" @default.
- W3008309516 cites W1966100433 @default.
- W3008309516 cites W1967879920 @default.
- W3008309516 cites W1976479130 @default.
- W3008309516 cites W2050252315 @default.
- W3008309516 cites W2069962935 @default.
- W3008309516 cites W2112796928 @default.
- W3008309516 cites W2210061839 @default.
- W3008309516 cites W2219903032 @default.
- W3008309516 cites W2287029277 @default.
- W3008309516 cites W2287972354 @default.
- W3008309516 cites W2404692435 @default.
- W3008309516 cites W243674440 @default.
- W3008309516 cites W2461729787 @default.
- W3008309516 cites W2485614840 @default.
- W3008309516 cites W2562762876 @default.
- W3008309516 cites W2601590138 @default.
- W3008309516 cites W2603304445 @default.
- W3008309516 cites W2740570963 @default.
- W3008309516 cites W2744790985 @default.
- W3008309516 cites W2762355244 @default.
- W3008309516 cites W2762841298 @default.
- W3008309516 cites W2768753204 @default.
- W3008309516 cites W2771498160 @default.
- W3008309516 cites W2789811186 @default.
- W3008309516 cites W2791036512 @default.
- W3008309516 cites W2791694051 @default.
- W3008309516 cites W2794869810 @default.
- W3008309516 cites W2796257745 @default.
- W3008309516 cites W2802633978 @default.
- W3008309516 cites W2805443169 @default.
- W3008309516 cites W2810292802 @default.
- W3008309516 cites W2905166565 @default.
- W3008309516 cites W2908441554 @default.
- W3008309516 cites W2912744143 @default.
- W3008309516 cites W2914345141 @default.
- W3008309516 cites W2939852233 @default.
- W3008309516 cites W2968409655 @default.
- W3008309516 cites W4233942849 @default.
- W3008309516 doi "https://doi.org/10.1016/j.ymssp.2020.106683" @default.
- W3008309516 hasPublicationYear "2020" @default.
- W3008309516 type Work @default.
- W3008309516 sameAs 3008309516 @default.
- W3008309516 citedByCount "241" @default.
- W3008309516 countsByYear W30083095162020 @default.
- W3008309516 countsByYear W30083095162021 @default.
- W3008309516 countsByYear W30083095162022 @default.
- W3008309516 countsByYear W30083095162023 @default.
- W3008309516 crossrefType "journal-article" @default.
- W3008309516 hasAuthorship W3008309516A5003913508 @default.
- W3008309516 hasAuthorship W3008309516A5006935730 @default.
- W3008309516 hasAuthorship W3008309516A5010684849 @default.
- W3008309516 hasAuthorship W3008309516A5064722162 @default.
- W3008309516 hasBestOaLocation W30083095162 @default.
- W3008309516 hasConcept C105795698 @default.
- W3008309516 hasConcept C108583219 @default.
- W3008309516 hasConcept C127313418 @default.
- W3008309516 hasConcept C153180895 @default.
- W3008309516 hasConcept C154945302 @default.
- W3008309516 hasConcept C165205528 @default.
- W3008309516 hasConcept C175551986 @default.
- W3008309516 hasConcept C199978012 @default.
- W3008309516 hasConcept C2781181686 @default.
- W3008309516 hasConcept C33923547 @default.
- W3008309516 hasConcept C41008148 @default.
- W3008309516 hasConcept C50644808 @default.
- W3008309516 hasConcept C81363708 @default.
- W3008309516 hasConceptScore W3008309516C105795698 @default.
- W3008309516 hasConceptScore W3008309516C108583219 @default.
- W3008309516 hasConceptScore W3008309516C127313418 @default.
- W3008309516 hasConceptScore W3008309516C153180895 @default.
- W3008309516 hasConceptScore W3008309516C154945302 @default.
- W3008309516 hasConceptScore W3008309516C165205528 @default.
- W3008309516 hasConceptScore W3008309516C175551986 @default.
- W3008309516 hasConceptScore W3008309516C199978012 @default.
- W3008309516 hasConceptScore W3008309516C2781181686 @default.
- W3008309516 hasConceptScore W3008309516C33923547 @default.
- W3008309516 hasConceptScore W3008309516C41008148 @default.
- W3008309516 hasConceptScore W3008309516C50644808 @default.
- W3008309516 hasConceptScore W3008309516C81363708 @default.
- W3008309516 hasFunder F4320335777 @default.
- W3008309516 hasLocation W30083095161 @default.
- W3008309516 hasLocation W30083095162 @default.
- W3008309516 hasOpenAccess W3008309516 @default.
- W3008309516 hasPrimaryLocation W30083095161 @default.
- W3008309516 hasRelatedWork W2731899572 @default.
- W3008309516 hasRelatedWork W2732542196 @default.
- W3008309516 hasRelatedWork W2738221750 @default.
- W3008309516 hasRelatedWork W3133861977 @default.
- W3008309516 hasRelatedWork W3156786002 @default.