Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008350376> ?p ?o ?g. }
- W3008350376 endingPage "105274" @default.
- W3008350376 startingPage "105274" @default.
- W3008350376 abstract "Abstract Individual measurement of traits of interest is extremely important in aquaculture, both for production systems and for breeding programs. Most of the current methods are based on manual measurements, which are laborious and stressful to the animals. Therefore, the development of fast, precise and indirect measurement methods for traits such as body weight (BW) and carcass weight (CW) is of great interest. An appealing way to take noninvasive measurements is through computer vision. Hence, the objectives in the current work were to: (1) devise a computer vision system (CVS) for autonomous measurement of Nile tilapia body area (A), length, height, and eccentricity, and (2) develop linear models for prediction of fish BW, CW, and carcass yield (CY). Images from 1653 fish were taken at the same time as their BW and CW were measured. A set of 822 images had pixels labeled into three classes: background, fish fins, and A. This labeled dataset was then used for training of Deep Learning Networks for automatic segmentation of the images into those pixel classes. In a subsequent step, the segmentations obtained from the best network were used for extraction of A, length, height, and eccentricity. These variables were then used as covariates in linear models for prediction of BW, CW, and CY. A network with an input image of 0.2 times the original size and four encoder/decoder layers achieved the best results for intersection over union on the test set of 99, 90 and 64 percent for background, fish body and fin areas, respectively. The overall best predictive model included A and its square as predictor variables and achieved R2 of 0.96 and 0.95 for fish BW and CW, respectively. Overall, the devised CVS was able to correctly differentiate fish body from background and fins, and the extracted area of the fish body could be successfully used for prediction of body and carcass weights." @default.
- W3008350376 created "2020-03-06" @default.
- W3008350376 creator A5004213122 @default.
- W3008350376 creator A5016766760 @default.
- W3008350376 creator A5033565668 @default.
- W3008350376 creator A5051281859 @default.
- W3008350376 creator A5052517928 @default.
- W3008350376 creator A5065361726 @default.
- W3008350376 creator A5083019919 @default.
- W3008350376 creator A5088095690 @default.
- W3008350376 date "2020-03-01" @default.
- W3008350376 modified "2023-09-24" @default.
- W3008350376 title "Deep Learning image segmentation for extraction of fish body measurements and prediction of body weight and carcass traits in Nile tilapia" @default.
- W3008350376 cites W1901129140 @default.
- W3008350376 cites W1991539813 @default.
- W3008350376 cites W2029988511 @default.
- W3008350376 cites W2087716278 @default.
- W3008350376 cites W2112796928 @default.
- W3008350376 cites W2117580587 @default.
- W3008350376 cites W2149537945 @default.
- W3008350376 cites W2162303335 @default.
- W3008350376 cites W2218354187 @default.
- W3008350376 cites W2290108831 @default.
- W3008350376 cites W2556405660 @default.
- W3008350376 cites W2605538337 @default.
- W3008350376 cites W2737897449 @default.
- W3008350376 cites W2743627947 @default.
- W3008350376 cites W2797538836 @default.
- W3008350376 cites W2879638548 @default.
- W3008350376 cites W2885575739 @default.
- W3008350376 cites W2898821016 @default.
- W3008350376 cites W2943049836 @default.
- W3008350376 cites W837473500 @default.
- W3008350376 doi "https://doi.org/10.1016/j.compag.2020.105274" @default.
- W3008350376 hasPublicationYear "2020" @default.
- W3008350376 type Work @default.
- W3008350376 sameAs 3008350376 @default.
- W3008350376 citedByCount "71" @default.
- W3008350376 countsByYear W30083503762020 @default.
- W3008350376 countsByYear W30083503762021 @default.
- W3008350376 countsByYear W30083503762022 @default.
- W3008350376 countsByYear W30083503762023 @default.
- W3008350376 crossrefType "journal-article" @default.
- W3008350376 hasAuthorship W3008350376A5004213122 @default.
- W3008350376 hasAuthorship W3008350376A5016766760 @default.
- W3008350376 hasAuthorship W3008350376A5033565668 @default.
- W3008350376 hasAuthorship W3008350376A5051281859 @default.
- W3008350376 hasAuthorship W3008350376A5052517928 @default.
- W3008350376 hasAuthorship W3008350376A5065361726 @default.
- W3008350376 hasAuthorship W3008350376A5083019919 @default.
- W3008350376 hasAuthorship W3008350376A5088095690 @default.
- W3008350376 hasConcept C105702510 @default.
- W3008350376 hasConcept C124504099 @default.
- W3008350376 hasConcept C134018914 @default.
- W3008350376 hasConcept C140793950 @default.
- W3008350376 hasConcept C147583825 @default.
- W3008350376 hasConcept C154945302 @default.
- W3008350376 hasConcept C185592680 @default.
- W3008350376 hasConcept C2778658382 @default.
- W3008350376 hasConcept C2779286987 @default.
- W3008350376 hasConcept C2780129523 @default.
- W3008350376 hasConcept C2909208804 @default.
- W3008350376 hasConcept C31972630 @default.
- W3008350376 hasConcept C41008148 @default.
- W3008350376 hasConcept C43617362 @default.
- W3008350376 hasConcept C4725764 @default.
- W3008350376 hasConcept C505870484 @default.
- W3008350376 hasConcept C86803240 @default.
- W3008350376 hasConcept C89600930 @default.
- W3008350376 hasConcept C90856448 @default.
- W3008350376 hasConceptScore W3008350376C105702510 @default.
- W3008350376 hasConceptScore W3008350376C124504099 @default.
- W3008350376 hasConceptScore W3008350376C134018914 @default.
- W3008350376 hasConceptScore W3008350376C140793950 @default.
- W3008350376 hasConceptScore W3008350376C147583825 @default.
- W3008350376 hasConceptScore W3008350376C154945302 @default.
- W3008350376 hasConceptScore W3008350376C185592680 @default.
- W3008350376 hasConceptScore W3008350376C2778658382 @default.
- W3008350376 hasConceptScore W3008350376C2779286987 @default.
- W3008350376 hasConceptScore W3008350376C2780129523 @default.
- W3008350376 hasConceptScore W3008350376C2909208804 @default.
- W3008350376 hasConceptScore W3008350376C31972630 @default.
- W3008350376 hasConceptScore W3008350376C41008148 @default.
- W3008350376 hasConceptScore W3008350376C43617362 @default.
- W3008350376 hasConceptScore W3008350376C4725764 @default.
- W3008350376 hasConceptScore W3008350376C505870484 @default.
- W3008350376 hasConceptScore W3008350376C86803240 @default.
- W3008350376 hasConceptScore W3008350376C89600930 @default.
- W3008350376 hasConceptScore W3008350376C90856448 @default.
- W3008350376 hasLocation W30083503761 @default.
- W3008350376 hasOpenAccess W3008350376 @default.
- W3008350376 hasPrimaryLocation W30083503761 @default.
- W3008350376 hasRelatedWork W1669643531 @default.
- W3008350376 hasRelatedWork W1721780360 @default.
- W3008350376 hasRelatedWork W2110230079 @default.
- W3008350376 hasRelatedWork W2117664411 @default.
- W3008350376 hasRelatedWork W2117933325 @default.
- W3008350376 hasRelatedWork W2122581818 @default.