Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008390225> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3008390225 endingPage "105308" @default.
- W3008390225 startingPage "105308" @default.
- W3008390225 abstract "Canopy management practices are carried out annually in vineyards for establishing and maintaining healthy canopies. Green shoot thinning is an integral part of canopy management practices in wine grapes (Vitis vinifera), used to reduce crop load to desired level for optimizing wine quality. Mechanical thinning can reduce labor requirements by 25 times compared to manual operation. However, due to difficulty in adjusting position and orientation of thinning end-effector to the shape of the cordons, cluster removal efficiency with mechanical green shoot thinning varies from 10 to 85%. Automating mechanical thinning could help to substantially increase its efficiency and performance. For performing an automated operation, the first step is to determine the shapes of vine cordons. In this work, methods were investigated to accurately determine the cordon shapes using deep learning networks in natural environment of commercial vineyards. A color camera was used to acquire canopy images, and different deep learning-based semantic segmentation techniques (SegNet and FCN) were used to do this cordon detection and determination work. Results show that the FCN-based model initialized from VGG16 weights (FCN-VGG16) achieved the highest Boundary-F1 score compared to the same with other networks investigated (SegNet-VGG16, SegNet-VGG19, and FCN-AlexNet). Following the cordon segmentation, different mathematical models (Polynomial, Gaussian, Fourier, and sum of sines) were fitted on the cordon segments obtained from FCN-VGG16 network. The results showed that a polynomial model of 6th degree could fit about 80% of cordons trajectories with an R-square value of 0.98 and more. This model could be used to determine cordon trajectories in field operations when the cordons were heavily occluded by shoots/leaves to precisely position and orient thinning end-effectors/rollers for automated green shoot thinning." @default.
- W3008390225 created "2020-03-06" @default.
- W3008390225 creator A5002859122 @default.
- W3008390225 creator A5013737840 @default.
- W3008390225 creator A5019535811 @default.
- W3008390225 creator A5042402054 @default.
- W3008390225 creator A5066710565 @default.
- W3008390225 date "2020-04-01" @default.
- W3008390225 modified "2023-10-17" @default.
- W3008390225 title "Determining grapevine cordon shape for automated green shoot thinning using semantic segmentation-based deep learning networks" @default.
- W3008390225 cites W1901129140 @default.
- W3008390225 cites W1916445479 @default.
- W3008390225 cites W1966580635 @default.
- W3008390225 cites W1993023093 @default.
- W3008390225 cites W2022508996 @default.
- W3008390225 cites W2064069471 @default.
- W3008390225 cites W2091695913 @default.
- W3008390225 cites W2322054712 @default.
- W3008390225 cites W2473156356 @default.
- W3008390225 cites W2501369945 @default.
- W3008390225 cites W2543665758 @default.
- W3008390225 cites W2578363764 @default.
- W3008390225 cites W2585123518 @default.
- W3008390225 cites W2591091422 @default.
- W3008390225 cites W2790979755 @default.
- W3008390225 cites W2899287754 @default.
- W3008390225 cites W2919115771 @default.
- W3008390225 cites W2936307272 @default.
- W3008390225 cites W2943955917 @default.
- W3008390225 cites W2963881378 @default.
- W3008390225 doi "https://doi.org/10.1016/j.compag.2020.105308" @default.
- W3008390225 hasPublicationYear "2020" @default.
- W3008390225 type Work @default.
- W3008390225 sameAs 3008390225 @default.
- W3008390225 citedByCount "31" @default.
- W3008390225 countsByYear W30083902252020 @default.
- W3008390225 countsByYear W30083902252021 @default.
- W3008390225 countsByYear W30083902252022 @default.
- W3008390225 countsByYear W30083902252023 @default.
- W3008390225 crossrefType "journal-article" @default.
- W3008390225 hasAuthorship W3008390225A5002859122 @default.
- W3008390225 hasAuthorship W3008390225A5013737840 @default.
- W3008390225 hasAuthorship W3008390225A5019535811 @default.
- W3008390225 hasAuthorship W3008390225A5042402054 @default.
- W3008390225 hasAuthorship W3008390225A5066710565 @default.
- W3008390225 hasBestOaLocation W30083902251 @default.
- W3008390225 hasConcept C101000010 @default.
- W3008390225 hasConcept C154945302 @default.
- W3008390225 hasConcept C166957645 @default.
- W3008390225 hasConcept C205649164 @default.
- W3008390225 hasConcept C2781353100 @default.
- W3008390225 hasConcept C33923547 @default.
- W3008390225 hasConcept C41008148 @default.
- W3008390225 hasConcept C89600930 @default.
- W3008390225 hasConcept C97137747 @default.
- W3008390225 hasConceptScore W3008390225C101000010 @default.
- W3008390225 hasConceptScore W3008390225C154945302 @default.
- W3008390225 hasConceptScore W3008390225C166957645 @default.
- W3008390225 hasConceptScore W3008390225C205649164 @default.
- W3008390225 hasConceptScore W3008390225C2781353100 @default.
- W3008390225 hasConceptScore W3008390225C33923547 @default.
- W3008390225 hasConceptScore W3008390225C41008148 @default.
- W3008390225 hasConceptScore W3008390225C89600930 @default.
- W3008390225 hasConceptScore W3008390225C97137747 @default.
- W3008390225 hasFunder F4320311888 @default.
- W3008390225 hasLocation W30083902251 @default.
- W3008390225 hasOpenAccess W3008390225 @default.
- W3008390225 hasPrimaryLocation W30083902251 @default.
- W3008390225 hasRelatedWork W1573752787 @default.
- W3008390225 hasRelatedWork W2072657584 @default.
- W3008390225 hasRelatedWork W2337991629 @default.
- W3008390225 hasRelatedWork W2341764771 @default.
- W3008390225 hasRelatedWork W2350998906 @default.
- W3008390225 hasRelatedWork W2357280244 @default.
- W3008390225 hasRelatedWork W2375223689 @default.
- W3008390225 hasRelatedWork W2989655533 @default.
- W3008390225 hasRelatedWork W4247499642 @default.
- W3008390225 hasRelatedWork W4283836740 @default.
- W3008390225 hasVolume "171" @default.
- W3008390225 isParatext "false" @default.
- W3008390225 isRetracted "false" @default.
- W3008390225 magId "3008390225" @default.
- W3008390225 workType "article" @default.