Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008392016> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3008392016 endingPage "102661" @default.
- W3008392016 startingPage "102661" @default.
- W3008392016 abstract "The exponential growth of ridesourcing services has been disrupting the transportation sector and changing how people travel. As ridesourcing continues to grow in popularity, being able to accurately predict the demand for it is essential for effective land-use and transportation planning and policymaking. Using recently released trip-level ridesourcing data in Chicago along with a range of variables obtained from publicly available data sources, we applied random forest, a widely-applied machine learning technique, to estimate a zone-to-zone (census tract) direct demand model for ridesourcing services. Compared to the traditional multiplicative models, the random forest model had a better model fit and achieved much higher predictive accuracy. We found that socioeconomic and demographic variables collectively contributed the most (about 50%) to the predictive power of the random forest model. Travel impedance, the built-environment characteristics, and the transit-supply-related variables are also indispensable in ridesourcing demand prediction." @default.
- W3008392016 created "2020-03-06" @default.
- W3008392016 creator A5020824659 @default.
- W3008392016 creator A5042552799 @default.
- W3008392016 creator A5078723316 @default.
- W3008392016 date "2020-02-01" @default.
- W3008392016 modified "2023-10-18" @default.
- W3008392016 title "Using machine learning for direct demand modeling of ridesourcing services in Chicago" @default.
- W3008392016 cites W1606702997 @default.
- W3008392016 cites W1678356000 @default.
- W3008392016 cites W2045049630 @default.
- W3008392016 cites W2050308906 @default.
- W3008392016 cites W2050928156 @default.
- W3008392016 cites W2055503627 @default.
- W3008392016 cites W2064329629 @default.
- W3008392016 cites W2076127024 @default.
- W3008392016 cites W2081762866 @default.
- W3008392016 cites W2083251376 @default.
- W3008392016 cites W2103970002 @default.
- W3008392016 cites W2133731173 @default.
- W3008392016 cites W2144512297 @default.
- W3008392016 cites W2424728784 @default.
- W3008392016 cites W2560092890 @default.
- W3008392016 cites W2583806860 @default.
- W3008392016 cites W2587802550 @default.
- W3008392016 cites W2616943032 @default.
- W3008392016 cites W2737636042 @default.
- W3008392016 cites W2747193592 @default.
- W3008392016 cites W2772724270 @default.
- W3008392016 cites W2795730973 @default.
- W3008392016 cites W2883063568 @default.
- W3008392016 cites W2887379897 @default.
- W3008392016 cites W2889617671 @default.
- W3008392016 cites W2889847519 @default.
- W3008392016 cites W2900471328 @default.
- W3008392016 cites W2911964244 @default.
- W3008392016 cites W2914285535 @default.
- W3008392016 cites W2924096405 @default.
- W3008392016 cites W2941854795 @default.
- W3008392016 cites W2943360680 @default.
- W3008392016 cites W2944707720 @default.
- W3008392016 cites W2947910723 @default.
- W3008392016 cites W2951739454 @default.
- W3008392016 cites W2998673126 @default.
- W3008392016 cites W3006958671 @default.
- W3008392016 cites W3121452939 @default.
- W3008392016 cites W4212883601 @default.
- W3008392016 cites W4247388845 @default.
- W3008392016 doi "https://doi.org/10.1016/j.jtrangeo.2020.102661" @default.
- W3008392016 hasPublicationYear "2020" @default.
- W3008392016 type Work @default.
- W3008392016 sameAs 3008392016 @default.
- W3008392016 citedByCount "59" @default.
- W3008392016 countsByYear W30083920162020 @default.
- W3008392016 countsByYear W30083920162021 @default.
- W3008392016 countsByYear W30083920162022 @default.
- W3008392016 countsByYear W30083920162023 @default.
- W3008392016 crossrefType "journal-article" @default.
- W3008392016 hasAuthorship W3008392016A5020824659 @default.
- W3008392016 hasAuthorship W3008392016A5042552799 @default.
- W3008392016 hasAuthorship W3008392016A5078723316 @default.
- W3008392016 hasConcept C119857082 @default.
- W3008392016 hasConcept C149782125 @default.
- W3008392016 hasConcept C15744967 @default.
- W3008392016 hasConcept C162324750 @default.
- W3008392016 hasConcept C169258074 @default.
- W3008392016 hasConcept C2780586970 @default.
- W3008392016 hasConcept C41008148 @default.
- W3008392016 hasConcept C77805123 @default.
- W3008392016 hasConceptScore W3008392016C119857082 @default.
- W3008392016 hasConceptScore W3008392016C149782125 @default.
- W3008392016 hasConceptScore W3008392016C15744967 @default.
- W3008392016 hasConceptScore W3008392016C162324750 @default.
- W3008392016 hasConceptScore W3008392016C169258074 @default.
- W3008392016 hasConceptScore W3008392016C2780586970 @default.
- W3008392016 hasConceptScore W3008392016C41008148 @default.
- W3008392016 hasConceptScore W3008392016C77805123 @default.
- W3008392016 hasLocation W30083920161 @default.
- W3008392016 hasOpenAccess W3008392016 @default.
- W3008392016 hasPrimaryLocation W30083920161 @default.
- W3008392016 hasRelatedWork W1556739848 @default.
- W3008392016 hasRelatedWork W2104700403 @default.
- W3008392016 hasRelatedWork W2133515697 @default.
- W3008392016 hasRelatedWork W2377333748 @default.
- W3008392016 hasRelatedWork W2389846458 @default.
- W3008392016 hasRelatedWork W2406532298 @default.
- W3008392016 hasRelatedWork W2565261883 @default.
- W3008392016 hasRelatedWork W2895867663 @default.
- W3008392016 hasRelatedWork W3014074531 @default.
- W3008392016 hasRelatedWork W3188002435 @default.
- W3008392016 hasVolume "83" @default.
- W3008392016 isParatext "false" @default.
- W3008392016 isRetracted "false" @default.
- W3008392016 magId "3008392016" @default.
- W3008392016 workType "article" @default.