Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008569663> ?p ?o ?g. }
- W3008569663 endingPage "214" @default.
- W3008569663 startingPage "205" @default.
- W3008569663 abstract "The original random forests (RFs) algorithm has been widely used and has achieved excellent performance for the classification and regression tasks. However, the research on the theory of RFs lags far behind its applications. In this article, to narrow the gap between the applications and the theory of RFs, we propose a new RFs algorithm, called random Shapley forests (RSFs), based on the Shapley value. The Shapley value is one of the well-known solutions in the cooperative game, which can fairly assess the power of each player in a game. In the construction of RSFs, RSFs use the Shapley value to evaluate the importance of each feature at each tree node by computing the dependency among the possible feature coalitions. In particular, inspired by the existing consistency theory, we have proved the consistency of the proposed RFs algorithm. Moreover, to verify the effectiveness of the proposed algorithm, experiments on eight UCI benchmark datasets and four real-world datasets have been conducted. The results show that RSFs perform better than or at least comparable with the existing consistent RFs, the original RFs, and a classic classifier, support vector machines." @default.
- W3008569663 created "2020-03-06" @default.
- W3008569663 creator A5000386328 @default.
- W3008569663 creator A5011845255 @default.
- W3008569663 creator A5029633264 @default.
- W3008569663 creator A5036892619 @default.
- W3008569663 creator A5046728432 @default.
- W3008569663 creator A5073059908 @default.
- W3008569663 date "2022-01-01" @default.
- W3008569663 modified "2023-10-16" @default.
- W3008569663 title "Random Shapley Forests: Cooperative Game-Based Random Forests With Consistency" @default.
- W3008569663 cites W1564947197 @default.
- W3008569663 cites W1605688901 @default.
- W3008569663 cites W1868705743 @default.
- W3008569663 cites W1930624869 @default.
- W3008569663 cites W2004670864 @default.
- W3008569663 cites W2016023958 @default.
- W3008569663 cites W2026925128 @default.
- W3008569663 cites W2035104901 @default.
- W3008569663 cites W2044442377 @default.
- W3008569663 cites W2059989526 @default.
- W3008569663 cites W2070018446 @default.
- W3008569663 cites W2075766392 @default.
- W3008569663 cites W2080791146 @default.
- W3008569663 cites W2089367555 @default.
- W3008569663 cites W2107327607 @default.
- W3008569663 cites W2113242816 @default.
- W3008569663 cites W2135293965 @default.
- W3008569663 cites W2139564957 @default.
- W3008569663 cites W2153635508 @default.
- W3008569663 cites W2155806188 @default.
- W3008569663 cites W2172156083 @default.
- W3008569663 cites W2192578595 @default.
- W3008569663 cites W2263289545 @default.
- W3008569663 cites W2267727210 @default.
- W3008569663 cites W2413700323 @default.
- W3008569663 cites W2481401919 @default.
- W3008569663 cites W2487898712 @default.
- W3008569663 cites W2543147921 @default.
- W3008569663 cites W2574702625 @default.
- W3008569663 cites W2613375858 @default.
- W3008569663 cites W2668279377 @default.
- W3008569663 cites W2739341114 @default.
- W3008569663 cites W2779422599 @default.
- W3008569663 cites W2782673423 @default.
- W3008569663 cites W2885605338 @default.
- W3008569663 cites W2911964244 @default.
- W3008569663 cites W2987569362 @default.
- W3008569663 cites W3099478002 @default.
- W3008569663 cites W4206636327 @default.
- W3008569663 cites W4300337452 @default.
- W3008569663 doi "https://doi.org/10.1109/tcyb.2020.2972956" @default.
- W3008569663 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32203041" @default.
- W3008569663 hasPublicationYear "2022" @default.
- W3008569663 type Work @default.
- W3008569663 sameAs 3008569663 @default.
- W3008569663 citedByCount "13" @default.
- W3008569663 countsByYear W30085696632021 @default.
- W3008569663 countsByYear W30085696632022 @default.
- W3008569663 countsByYear W30085696632023 @default.
- W3008569663 crossrefType "journal-article" @default.
- W3008569663 hasAuthorship W3008569663A5000386328 @default.
- W3008569663 hasAuthorship W3008569663A5011845255 @default.
- W3008569663 hasAuthorship W3008569663A5029633264 @default.
- W3008569663 hasAuthorship W3008569663A5036892619 @default.
- W3008569663 hasAuthorship W3008569663A5046728432 @default.
- W3008569663 hasAuthorship W3008569663A5073059908 @default.
- W3008569663 hasBestOaLocation W30085696632 @default.
- W3008569663 hasConcept C11413529 @default.
- W3008569663 hasConcept C119857082 @default.
- W3008569663 hasConcept C12267149 @default.
- W3008569663 hasConcept C124101348 @default.
- W3008569663 hasConcept C13280743 @default.
- W3008569663 hasConcept C144237770 @default.
- W3008569663 hasConcept C154945302 @default.
- W3008569663 hasConcept C169258074 @default.
- W3008569663 hasConcept C177142836 @default.
- W3008569663 hasConcept C185798385 @default.
- W3008569663 hasConcept C199022921 @default.
- W3008569663 hasConcept C205649164 @default.
- W3008569663 hasConcept C2776436953 @default.
- W3008569663 hasConcept C2781416736 @default.
- W3008569663 hasConcept C33923547 @default.
- W3008569663 hasConcept C41008148 @default.
- W3008569663 hasConcept C95623464 @default.
- W3008569663 hasConceptScore W3008569663C11413529 @default.
- W3008569663 hasConceptScore W3008569663C119857082 @default.
- W3008569663 hasConceptScore W3008569663C12267149 @default.
- W3008569663 hasConceptScore W3008569663C124101348 @default.
- W3008569663 hasConceptScore W3008569663C13280743 @default.
- W3008569663 hasConceptScore W3008569663C144237770 @default.
- W3008569663 hasConceptScore W3008569663C154945302 @default.
- W3008569663 hasConceptScore W3008569663C169258074 @default.
- W3008569663 hasConceptScore W3008569663C177142836 @default.
- W3008569663 hasConceptScore W3008569663C185798385 @default.
- W3008569663 hasConceptScore W3008569663C199022921 @default.
- W3008569663 hasConceptScore W3008569663C205649164 @default.
- W3008569663 hasConceptScore W3008569663C2776436953 @default.