Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008593201> ?p ?o ?g. }
- W3008593201 endingPage "117239" @default.
- W3008593201 startingPage "117239" @default.
- W3008593201 abstract "Abstract In this study, the potential of six different machine learning models, gradient boosting tree (GBT), multilayer perceptron neural network (MLPNN), two types of adaptive neuro-fuzzy inference systems (ANFIS) based on fuzzy c-means clustering (ANFIS-FCM) and subtractive clustering (ANFIS-SC), multivariate adaptive regression spline (MARS), and classification and regression tree (CART) were used for forecasting solar radiation from two stations of two different locations, Turkey and USA. Wind speed, maximum air temperature, minimum air temperature and relative humidity were used as inputs to the developed models. For accurate evaluation of performance of models, four statistical indicators, root mean squared error (RMSE), coefficient of correlation (R), mean absolute error (MAE) and Nash–Sutcliffe efficiency coefficient (NS) were employed to evaluate accuracy of the developed models. Comparison of results showed that the GBT model performed better than the MLPNN, ANFIS, MARS, and CART in modeling solar radiation. The average RMSE of MLPNN, ANFIS-FCM, ANFIS-SC, MARS and CART models was decreased by 0.26%, 1.5%, 0.51%, 2.5%, and 19.34% using GBT model at Fairfield Station, 4%, 1.37%, 0.24%, 4.12%, and 24.4% at Monmouth Station, 11.99%, 48.7%, 41.6%, 8.23%, and 33.41% at Antalya Station, 11%, 54.8%, 51.9%, 19.65%, and 37.1% at Mersin Station, respectively. The overall results indicated that the GBT model could be successfully applied in forecasting solar radiation by using climatic parameters as inputs." @default.
- W3008593201 created "2020-03-06" @default.
- W3008593201 creator A5001506225 @default.
- W3008593201 creator A5016315589 @default.
- W3008593201 creator A5043935498 @default.
- W3008593201 creator A5071517100 @default.
- W3008593201 date "2020-04-01" @default.
- W3008593201 modified "2023-10-01" @default.
- W3008593201 title "A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions" @default.
- W3008593201 cites W1163287539 @default.
- W3008593201 cites W1542005766 @default.
- W3008593201 cites W1570834090 @default.
- W3008593201 cites W1678356000 @default.
- W3008593201 cites W1800280049 @default.
- W3008593201 cites W1970695256 @default.
- W3008593201 cites W1995722107 @default.
- W3008593201 cites W2013643426 @default.
- W3008593201 cites W2019207321 @default.
- W3008593201 cites W2029724692 @default.
- W3008593201 cites W2030450739 @default.
- W3008593201 cites W2040735756 @default.
- W3008593201 cites W2054793686 @default.
- W3008593201 cites W2088638940 @default.
- W3008593201 cites W2089805406 @default.
- W3008593201 cites W2102201073 @default.
- W3008593201 cites W2134829952 @default.
- W3008593201 cites W2210647982 @default.
- W3008593201 cites W2227550020 @default.
- W3008593201 cites W2228799413 @default.
- W3008593201 cites W2318515285 @default.
- W3008593201 cites W2471744513 @default.
- W3008593201 cites W2502075365 @default.
- W3008593201 cites W2508967951 @default.
- W3008593201 cites W2552610662 @default.
- W3008593201 cites W2552648619 @default.
- W3008593201 cites W2587579504 @default.
- W3008593201 cites W2610219179 @default.
- W3008593201 cites W2729015950 @default.
- W3008593201 cites W2756625063 @default.
- W3008593201 cites W2768607187 @default.
- W3008593201 cites W2788416316 @default.
- W3008593201 cites W2792986592 @default.
- W3008593201 cites W2808149924 @default.
- W3008593201 cites W2888611374 @default.
- W3008593201 cites W2890217676 @default.
- W3008593201 cites W2899689882 @default.
- W3008593201 cites W2909206877 @default.
- W3008593201 cites W2920998881 @default.
- W3008593201 cites W2938055116 @default.
- W3008593201 doi "https://doi.org/10.1016/j.energy.2020.117239" @default.
- W3008593201 hasPublicationYear "2020" @default.
- W3008593201 type Work @default.
- W3008593201 sameAs 3008593201 @default.
- W3008593201 citedByCount "77" @default.
- W3008593201 countsByYear W30085932012020 @default.
- W3008593201 countsByYear W30085932012021 @default.
- W3008593201 countsByYear W30085932012022 @default.
- W3008593201 countsByYear W30085932012023 @default.
- W3008593201 crossrefType "journal-article" @default.
- W3008593201 hasAuthorship W3008593201A5001506225 @default.
- W3008593201 hasAuthorship W3008593201A5016315589 @default.
- W3008593201 hasAuthorship W3008593201A5043935498 @default.
- W3008593201 hasAuthorship W3008593201A5071517100 @default.
- W3008593201 hasConcept C105795698 @default.
- W3008593201 hasConcept C119599485 @default.
- W3008593201 hasConcept C119857082 @default.
- W3008593201 hasConcept C127413603 @default.
- W3008593201 hasConcept C149782125 @default.
- W3008593201 hasConcept C152877465 @default.
- W3008593201 hasConcept C154945302 @default.
- W3008593201 hasConcept C33923547 @default.
- W3008593201 hasConcept C41008148 @default.
- W3008593201 hasConcept C48921125 @default.
- W3008593201 hasConcept C541104983 @default.
- W3008593201 hasConcept C83546350 @default.
- W3008593201 hasConceptScore W3008593201C105795698 @default.
- W3008593201 hasConceptScore W3008593201C119599485 @default.
- W3008593201 hasConceptScore W3008593201C119857082 @default.
- W3008593201 hasConceptScore W3008593201C127413603 @default.
- W3008593201 hasConceptScore W3008593201C149782125 @default.
- W3008593201 hasConceptScore W3008593201C152877465 @default.
- W3008593201 hasConceptScore W3008593201C154945302 @default.
- W3008593201 hasConceptScore W3008593201C33923547 @default.
- W3008593201 hasConceptScore W3008593201C41008148 @default.
- W3008593201 hasConceptScore W3008593201C48921125 @default.
- W3008593201 hasConceptScore W3008593201C541104983 @default.
- W3008593201 hasConceptScore W3008593201C83546350 @default.
- W3008593201 hasLocation W30085932011 @default.
- W3008593201 hasOpenAccess W3008593201 @default.
- W3008593201 hasPrimaryLocation W30085932011 @default.
- W3008593201 hasRelatedWork W2018697919 @default.
- W3008593201 hasRelatedWork W2060912888 @default.
- W3008593201 hasRelatedWork W2062105804 @default.
- W3008593201 hasRelatedWork W2325374573 @default.
- W3008593201 hasRelatedWork W2375721435 @default.
- W3008593201 hasRelatedWork W247449116 @default.
- W3008593201 hasRelatedWork W3021457118 @default.
- W3008593201 hasRelatedWork W3122861356 @default.