Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008663397> ?p ?o ?g. }
- W3008663397 endingPage "117346" @default.
- W3008663397 startingPage "117346" @default.
- W3008663397 abstract "Air pollution has recently become a regional problem in the North China Plain, which is heavily populated with industrialized city clusters. The local air quality is frequently affected by air pollutant transport in this region, as well as other meteorological conditions. This study aims to reveal the roles of air pollutant transport and atmospheric boundary layer variation in the development of air pollution episodes. Two cities (Dezhou and Cangzhou in Shandong and Hebei Provinces, respectively) near the centre of the North China Plain are chosen, and PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 μm) concentrations over two winters (January 2016 and December 2017 to January 2018) are evaluated. Both meteorological and air quality observational data are used to construct hourly wind and PM2.5 concentration fields. High-quality atmospheric boundary layer soundings provide detailed information on boundary layer height and its diurnal evolution. A simple box model is employed to simulate variation in PM2.5 levels in these two cities by using the spatial gradients and temporal variation rates in the diagnostic fields of wind and PM2.5 concentrations. Two prominent factors affecting PM2.5 concentration variation are identified by comparing the simulated and observed diurnal variation in PM2.5 concentration. The first one is the entrainment of upper-layer air pollutants into the boundary layer in the morning. And the second one is the temporary accumulation of PM2.5 during the day-to-evening period. After incorporating these two effects, the simulated PM2.5 is comparable with the observed data. The correlation coefficients between the simulation and observation are 0.84 and 0.77 (P < 0.01) for Cangzhou and Dezhou, respectively, and the normalized mean biases are −0.04 and −0.09, respectively. The relative contributions of different processes affecting PM2.5 concentrations during air pollution episodes are assessed with the model simulations. The percentage contributions for local emissions, deposition, horizontal advection, temporary accumulation, and boundary layer height variation are from 27% to 45%, −28% to −20%, 46% to 76%, 13% to 40%, and −6% to 22%, respectively. Local emission and regional air pollutant transport are the main causes of these episodes. Temporary accumulation of PM2.5 during the day-to-evening period is also an important contributor to the episodes. In addition, the entrainment shows varying contributions to PM2.5 increase with a maximum rate of 30% during the PM2.5 pollution episodes in the North China Plain." @default.
- W3008663397 created "2020-03-06" @default.
- W3008663397 creator A5005482767 @default.
- W3008663397 creator A5019317928 @default.
- W3008663397 creator A5028792040 @default.
- W3008663397 creator A5040618989 @default.
- W3008663397 creator A5075973698 @default.
- W3008663397 creator A5076286892 @default.
- W3008663397 creator A5088152181 @default.
- W3008663397 date "2020-03-01" @default.
- W3008663397 modified "2023-10-16" @default.
- W3008663397 title "Diagnostic analysis of wintertime PM2.5 pollution in the North China Plain: The impacts of regional transport and atmospheric boundary layer variation" @default.
- W3008663397 cites W1554549611 @default.
- W3008663397 cites W1560749659 @default.
- W3008663397 cites W1862113676 @default.
- W3008663397 cites W1973127847 @default.
- W3008663397 cites W1977670273 @default.
- W3008663397 cites W1977927381 @default.
- W3008663397 cites W1979628724 @default.
- W3008663397 cites W1986259363 @default.
- W3008663397 cites W1992170152 @default.
- W3008663397 cites W1994225046 @default.
- W3008663397 cites W2000500017 @default.
- W3008663397 cites W2001484277 @default.
- W3008663397 cites W2004479151 @default.
- W3008663397 cites W2004979504 @default.
- W3008663397 cites W2006784304 @default.
- W3008663397 cites W2009009889 @default.
- W3008663397 cites W2010797409 @default.
- W3008663397 cites W2011460032 @default.
- W3008663397 cites W2017542038 @default.
- W3008663397 cites W2024355140 @default.
- W3008663397 cites W2028933240 @default.
- W3008663397 cites W2040113717 @default.
- W3008663397 cites W2048723649 @default.
- W3008663397 cites W2074852060 @default.
- W3008663397 cites W2084365937 @default.
- W3008663397 cites W2094440342 @default.
- W3008663397 cites W2096555614 @default.
- W3008663397 cites W2098053812 @default.
- W3008663397 cites W2130042267 @default.
- W3008663397 cites W2154567020 @default.
- W3008663397 cites W2173788054 @default.
- W3008663397 cites W2175111766 @default.
- W3008663397 cites W2217007742 @default.
- W3008663397 cites W2238158866 @default.
- W3008663397 cites W2332976455 @default.
- W3008663397 cites W2469220971 @default.
- W3008663397 cites W2471648073 @default.
- W3008663397 cites W2516115747 @default.
- W3008663397 cites W2560305752 @default.
- W3008663397 cites W2575591472 @default.
- W3008663397 cites W2580165256 @default.
- W3008663397 cites W2602110992 @default.
- W3008663397 cites W2745960182 @default.
- W3008663397 cites W2767043307 @default.
- W3008663397 cites W2770029440 @default.
- W3008663397 cites W2783348683 @default.
- W3008663397 cites W2790768390 @default.
- W3008663397 cites W2793762636 @default.
- W3008663397 cites W2794294764 @default.
- W3008663397 cites W2795837049 @default.
- W3008663397 cites W2799405572 @default.
- W3008663397 cites W2803196955 @default.
- W3008663397 cites W2895740296 @default.
- W3008663397 cites W2898405163 @default.
- W3008663397 cites W2899670816 @default.
- W3008663397 cites W2906751544 @default.
- W3008663397 cites W2906839298 @default.
- W3008663397 cites W2915204499 @default.
- W3008663397 cites W2916375754 @default.
- W3008663397 cites W2922185219 @default.
- W3008663397 cites W2922364208 @default.
- W3008663397 cites W2943684959 @default.
- W3008663397 cites W2952408190 @default.
- W3008663397 cites W2958960705 @default.
- W3008663397 cites W2965072134 @default.
- W3008663397 doi "https://doi.org/10.1016/j.atmosenv.2020.117346" @default.
- W3008663397 hasPublicationYear "2020" @default.
- W3008663397 type Work @default.
- W3008663397 sameAs 3008663397 @default.
- W3008663397 citedByCount "21" @default.
- W3008663397 countsByYear W30086633972021 @default.
- W3008663397 countsByYear W30086633972022 @default.
- W3008663397 countsByYear W30086633972023 @default.
- W3008663397 crossrefType "journal-article" @default.
- W3008663397 hasAuthorship W3008663397A5005482767 @default.
- W3008663397 hasAuthorship W3008663397A5019317928 @default.
- W3008663397 hasAuthorship W3008663397A5028792040 @default.
- W3008663397 hasAuthorship W3008663397A5040618989 @default.
- W3008663397 hasAuthorship W3008663397A5075973698 @default.
- W3008663397 hasAuthorship W3008663397A5076286892 @default.
- W3008663397 hasAuthorship W3008663397A5088152181 @default.
- W3008663397 hasConcept C107775477 @default.
- W3008663397 hasConcept C111603439 @default.
- W3008663397 hasConcept C121332964 @default.
- W3008663397 hasConcept C126314574 @default.
- W3008663397 hasConcept C127313418 @default.