Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008701474> ?p ?o ?g. }
- W3008701474 endingPage "387" @default.
- W3008701474 startingPage "383" @default.
- W3008701474 abstract "No AccessEngineering NotesOptimization of Dielectric Barrier Discharge Plasma Actuators for Icing ControlHaiyang Hu, Xuanshi Meng, Jinsheng Cai, Wenwu Zhou, Yang Liu and Hui HuHaiyang HuNorthwestern Polytechnical University, 710072 Xi’an, People’s Republic of China*Graduate Student; currenty Doctorate, Iowa State University, Iowa 50011.Search for more papers by this author, Xuanshi MengNorthwestern Polytechnical University, 710072 Xi’an, People’s Republic of China†Professor; (Corresponding Author).Search for more papers by this author, Jinsheng CaiNorthwestern Polytechnical University, 710072 Xi’an, People’s Republic of China‡Professor; .Search for more papers by this author, Wenwu ZhouShanghai Jiao Tong University, 200240 Shanghai, People’s Republic of China§Assistant Professor; .Search for more papers by this author, Yang LiuEast Carolina University, Greenville, North Carolina 27858¶Assistant Professor; .Search for more papers by this author and Hui HuIowa State University, Ames, Iowa 50011**Professor; .Search for more papers by this authorPublished Online:17 Feb 2020https://doi.org/10.2514/1.C035697SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Bragg M. B., Gregorek G. M. and Lee J. D., “Airfoil Aerodynamics in Icing Conditions,” Journal of Aircraft, Vol. 23, No. 1, 1986, pp. 76–81. https://doi.org/10.2514/3.45269 LinkGoogle Scholar[2] Thomas S. K., Cassoni R. P. and MacArthur C. D., “Aircraft Anti-Icing and De-Icing Techniques and Modeling,” Journal of Aircraft, Vol. 33, No. 5, 1996, pp. 841–854. https://doi.org/10.2514/3.47027 LinkGoogle Scholar[3] Cao Y. H., Tan W. Y. and Wu Z. L., “Aircraft Icing: An Ongoing Threat to Aviation Safety,” Aerospace Science and Technology, Vol. 75, April 2018, pp. 353–385. Google Scholar[4] Whalen E. A. and Bragg M. B., “Aircraft Characterization in Icing Using Flight Test Data,” Journal of Aircraft, Vol. 42, No. 3, 2005, pp. 792–794. https://doi.org/10.2514/1.11198 LinkGoogle Scholar[5] Waldman R. M. and Hu H., “High-Speed Imaging to Quantify Transient Ice Accretion Process over an Airfoil,” Journal of Aircraft, Vol. 53, No. 2, 2016, pp. 369–377. https://doi.org/10.2514/1.C033367 LinkGoogle Scholar[6] Abbas A., de Vicente J. and Valero E., “Aerodynamic Technologies to Improve Aircraft Performance,” Aerospace Science and Technology, Vol. 28, No. 1, 2013, pp. 100–132. https://doi.org/10.1016/j.ast.2012.10.008 CrossrefGoogle Scholar[7] Venna S., Lin Y. J. and Botura G., “Piezoelectric Transducer Actuated Leading Edge De-Icing with Simultaneous Shear and Impulse Forces,” Journal of Aircraft, Vol. 44, No. 2, 2007, pp. 509–515. https://doi.org/10.2514/1.23996 LinkGoogle Scholar[8] Nagappan N., Golubev V. V. and Habashi W., “Parametric Analysis of Icing Control Using Synthetic Jet Actuators,” AIAA Paper 2013-2453, 2013. https://doi.org/10.2514/6.2013-2453 LinkGoogle Scholar[9] Shinkafi A. and Lawson C., “Enhanced Method of Conceptual Sizing of Aircraft Electro-Thermal De-Icing System,” International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, Vol. 8, No. 6, 2014, pp. 1069–1076. Google Scholar[10] Drury M. D., Szefi J. T. and Palacios J. L., “Full-Scale Testing of a Centrifugally Powered Pneumatic De-Icing System for Helicopter Rotor Blades,” Journal of Aircraft, Vol. 54, No. 1, 2017, pp. 220–228. https://doi.org/10.2514/1.C033965 LinkGoogle Scholar[11] De Pauw D. and Dolatabadi A., “Effect of Superhydrophobic Coating on the Anti-Icing and Deicing of an Airfoil,” Journal of Aircraft, Vol. 54, No. 2, 2017, pp. 490–499. https://doi.org/10.2514/1.C033828 LinkGoogle Scholar[12] Liu Y., Bond L. J. and Hu H., “Ultrasonic-Attenuation-Based Technique for Ice Characterization Pertinent to Aircraft Icing Phenomena,” AIAA Journal, Vol. 55, No. 5, 2017, pp. 1602–1609. https://doi.org/10.2514/1.J055500 LinkGoogle Scholar[13] Juuti P., Haapanen J., Stenroos C., Niemelä-Anttonen H., Harra J., Koivuluoto H., Teisala H., Lahti J., Tuominen M., Kuusipalo J., Vuoristo P. and Mäkelä J. M., “Achieving a Slippery, Liquid-Infused Porous Surface with Anti-Icing Properties by Direct Deposition of Flame Synthesized Aerosol Nano-Particles on a Thermally Fragile Substrate,” Applied Physics Letters, Vol. 110, No. 16, 2017, Paper 161603. https://doi.org/10.1063/1.4981905 CrossrefGoogle Scholar[14] Moreau E., “Airflow Control by Non-Thermal Plasma Actuators,” Journal of Physics D: Applied Physics, Vol. 40, No. 3, 2007, pp. 605–636. https://doi.org/10.1088/0022-3727/40/3/S01 CrossrefGoogle Scholar[15] Mertz B. E. and Corke T. C., “Single-Dielectric Barrier Discharge Plasma Actuator Modelling and Validation,” Journal of Fluid Mechanics, Vol. 669, Feb. 2011, pp. 557–583. https://doi.org/10.1017/S0022112010005203 CrossrefGoogle Scholar[16] Wang J. J., Choi K. S., Feng L. H., Jukes T. N. and Whalley R. D., “Recent Developments in DBD Plasma Flow Control,” Progress in Aerospace Sciences, Vol. 62, Oct. 2013, pp. 52–78. https://doi.org/10.1016/j.paerosci.2013.05.003 CrossrefGoogle Scholar[17] Roupassov D. V., Nikipelov A. A., Nudnova M. M. and Starikovskii A. Y., “Flow Separation Control by Plasma Actuator with Nanosecond Pulsed-Periodic Discharge,” AIAA Journal, Vol. 47, No. 1, 2009, pp. 168–185. https://doi.org/10.2514/1.38113 LinkGoogle Scholar[18] Kelley C. L., Bowles P. O., Cooney J., He C., Corke T. C., Osborn B. A., Silkey J. S. and Zehnle J., “Leading-Edge Separation Control Using Alternating Current and Nanosecond Pulse Plasma Actuators,” AIAA Journal, Vol. 52, No. 9, 2014, pp. 1871–1884. https://doi.org/10.2514/1.J052708 LinkGoogle Scholar[19] Zhang X., Li H. X., Huang Y. and Wang W. B., “Wing Flow Separation Control Using Asymmetrical and Symmetrical Plasma Actuator,” Journal of Aircraft, Vol. 54, No. 1, 2017, pp. 301–309. https://doi.org/10.2514/1.C033845 LinkGoogle Scholar[20] Nishihara M., Takashima K., Rich J. W. and Adamovich I. V., “Mach 5 Bow Shock Control by a Nanosecond Pulse Surface Dielectric Barrier Discharge,” Physics of Fluid, Vol. 23, No. 6, 2011, pp. 605–622. https://doi.org/10.1063/1.3599697 CrossrefGoogle Scholar[21] Hong D., Magnier P., Bauchire J. M., Dong B. and Pouvesle J. M., “Experimental study of a DBD Surface Discharge for the Active Control of Subsonic Airflow,” Journal of Physics D: Applied Physics, Vol. 41, No. 15, 2008, Paper 155201. https://doi.org/10.1088/1361-6463/aa6229 Google Scholar[22] DeJoseph C., Kimmel R. L., Hayes J. R., Menart J. and Stanfield S. A., “Rotational and Vibrational Temperature Distributions for a Dielectric Barrier Discharge in Air,” AIAA Journal, Vol. 47, No. 5, 2009, pp. 1107–1115. https://doi.org/10.2514/1.37648 LinkGoogle Scholar[23] Joussot R., Boucinha V., Rabat H., Hong D., Leroy-Chesneau A. and Weber-Rozenbaum R., “Thermal Characterization of a DBD Plasma Actuator: Dielectric Temperature Measurements Using Infrared Thermography,” AIAA Paper 2010-5102, 2012. https://doi.org/10.2514/6.2010-5102 Google Scholar[24] Erfani R., Zare-Behtash H. and Kontis K., “Plasma Actuator: Influence of Dielectric Surface Temperature,” Experimental Thermal and Fluid Science, Vol. 42, Oct. 2012, pp. 258–264. https://doi.org/10.1016/j.expthermflusci.2012.04.023 CrossrefGoogle Scholar[25] Meng X., Chen Z. and Song K., “AC- and NS-DBD Plasma Flow Control Research,” Proceedings of the 2nd NPU-DLR Workshop on Aerodynamics, German Aerospace Center (DLR), German Aerospace Institute, Inst. fur Aerodynamik und Stromungstechnik, DLR-IB 124-2014/5, 1-75, Cologne, Germany, 2014. Google Scholar[26] Meng X., Cai J., Tian Y., Han X., Zhang D. and Hu H., “Experimental Study of Deicing and Anti-Icing on a Cylinder by DBD Plasma Actuation,” AIAA Paper 2016-4019, 2016. https://doi.org/10.2514/6.2016-4019 LinkGoogle Scholar[27] Cai J., Tian Y., Meng X., Han X., Zhang D. and Hu H., “An Experimental Study of Icing Control Using DBD Plasma Actuator,” Experiments in Fluids, Vol. 58, No. 102, 2017, pp. 1–8. https://doi.org/10.1007/s00348-017-2378-y Google Scholar[28] Kriegseis J., Simon B. and Grundmann S., “Towards In-Flight Applications? A Review on Dielectric Barrier Discharge-Based Boundary-Layer Control,” Applied Mechanics Reviews, Vol. 68, No. 2, 2016, Paper 020802. https://doi.org/10.1115/1.4033570 CrossrefGoogle Scholar[29] Zhou W., Liu Y., Hu H., Hu H. and Meng X., “Utilization of Thermal Effect Induced by Plasma Generation for Aircraft Icing Mitigation,” AIAA Journal, Vol. 56, No. 3, 2018, pp. 1097–1104. https://doi.org/10.2514/1.J056358 LinkGoogle Scholar[30] Tian Y., Zhang Z., Cai J., Yang L. and Kang L., “Experimental Study of an Anti-Icing Method over an Airfoil Based on Pulsed Dielectric Barrier Discharge Plasma,” Chinese Journal of Aeronautics, Vol. 31, No. 7, 2018, pp. 1449–1460. https://doi.org/10.1016/j.cja.2018.05.008 CrossrefGoogle Scholar[31] Liu Y., Kolbakir C., Hu H. Y. and Hu H., “A Comparison Study on the Thermal Effects in DBD Plasma Actuation and Electrical Heating for Aircraft Icing Mitigation,” International Journal of Heat and Mass Transfer, Vol. 124, Sept. 2018, pp. 319–330. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.076 CrossrefGoogle Scholar[32] Meng X., Hu H., Li C., Abbasi A. A., Cai J. and Hu H., “Mechanism Study of Coupled Aerodynamic and Thermal Effects Using Plasma Actuation for Anti-Icing,” Physics of Fluids, 31, No. 3, 2019, Paper 037103. https://doi.org/10.1063/1.5086884 CrossrefGoogle Scholar[33] Roth J. R., “Aerodynamic Flow Acceleration Using Paraelectric and Peristaltic Electrohydrodynamic Effects of a One Atmosphere Uniform Glow Discharge Plasma,” Physics of Plasmas, Vol. 10, No. 5, 2003, pp. 2117–2126. https://doi.org/10.1063/1.1564823 CrossrefGoogle Scholar[34] Zhang X., Li H., Huang Y. and Wang W., “Wing Flow Separation Control Using Asymmetrical and Symmetrical Plasma Actuator,” Journal of Aircraft, Vol. 54, No. 1, 2017, pp. 301–309. https://doi.org/10.2514/1.C033845 LinkGoogle Scholar[35] Corke T. C., Post M. L. and Orlov D. M., “Single-Dielectric Barrier Discharge Plasma Enhanced Aerodynamics: Concepts Optimization, and Applications,” Journal of Propulsion and Power, Vol. 24, No. 5, 2008, pp. 935–945. https://doi.org/10.2514/1.24430 LinkGoogle Scholar Previous article FiguresReferencesRelatedDetailsCited byImproving aircraft aerodynamic performance with bionic wing obtained by ice shape modulationChinese Journal of Aeronautics, Vol. 36, No. 2Pulsed Velocity Created by a Plasma Actuator in the Vicinity of the WallXin Zhang and Yong Huang15 January 2023 | AIAA Journal, Vol. 0, No. 0Recent developments in thermal characteristics of surface dielectric barrier discharge plasma actuators driven by sinusoidal high-voltage powerChinese Journal of Aeronautics, Vol. 36, No. 1Recent Developments on Dielectric Barrier Discharge (DBD) Plasma Actuators for Icing Mitigation21 December 2022 | Actuators, Vol. 12, No. 1Plasma Gurney Flap Flight Control at Low Angle of AttackXin Gu, Huu Duc Vo, Njuki W. Mureithi and Eric Laurendeau23 August 2022 | Journal of Aircraft, Vol. 60, No. 1Determining Region of Installation of Flat-Ended Piezoelectric De-Icing Actuators on Curved SurfacesBo Miao , Wen Li, Lang Yuan and Chunling Zhu6 July 2022 | Journal of Aircraft, Vol. 60, No. 1Evolution of a single sessile droplet under the influence of the dielectric barrier discharge plasma actuatorPhysics of Fluids, Vol. 34, No. 12Lagrangian analysis of the flow induced by a dielectric barrier discharge plasma actuator array under burst mode actuationAIP Advances, Vol. 12, No. 11Design of the Thermoelectric Ice Protection System for a Tiltrotor ApplicationAlessandro Zanon and Michele De Gennaro21 April 2022 | Journal of Aircraft, Vol. 59, No. 5Formation Mechanism of Wall Jet Generated by Plasma Actuators in Quiescent AirXin Zhang and Feng Qu2 May 2022 | AIAA Journal, Vol. 60, No. 8Multipurpose distributed dielectric-barrier-discharge plasma actuation: Icing sensing, anti-icing, and flow control in onePhysics of Fluids, Vol. 34, No. 7Spatial–temporal evolution of the pressure field generated by a plasma actuator in quiescent airPhysics of Fluids, Vol. 34, No. 7A comparative study on post-stall flow separation control mechanism of steady and unsteady plasma actuatorsPhysics of Fluids, Vol. 34, No. 5Vortex Shedding Frequency Scaling of Coherent Structures Induced by a Plasma ActuatorXin Zhang and Haohua Zong21 September 2021 | AIAA Journal, Vol. 60, No. 2Characteristics of a nanosecond pulsed dielectric barrier plasma actuator with a surface water filmPhysics of Plasmas, Vol. 29, No. 1Acoustic streaming in water induced by an asymmetric dielectric-barrier-discharge plasma actuator at the initiation stagePhysics of Fluids, Vol. 34, No. 1Numerical simulation of the flow around a square cylinder under plasma actuator controlPhysics of Fluids, Vol. 33, No. 12The spatial-temporal evolution process of flow field generated by a pulsed-DC plasma actuator in quiescent airAerospace Science and Technology, Vol. 118 What's Popular Volume 57, Number 2March 2020 CrossmarkInformationCopyright © 2020 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3868 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsActuatorsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsAircraft DesignAircraft Operations and TechnologyAircraft Wing DesignAirfoilAviationAviation SafetyAviation Weather HazardsAvionicsGuidance, Navigation, and Control SystemsWind Tunnels KeywordsPlasma ActuatorDielectric Barrier DischargeAirfoilAerodynamic CharacteristicsAnti IcingStagnation PointSupercoolingAerodynamic EfficiencyThermal EffectsElectrical EnergyAcknowledgmentsThis work is supported by the National Natural Science Foundation of China (grant no. 11672245), the Aeronautical Science Foundation of China (grant no. 2018ZA53), the National Key Laboratory Research Foundation of China (grant no. 9140C420301110C42), and the 111 Project (B17037).PDF Received8 August 2019Accepted7 October 2019Published online17 February 2020" @default.
- W3008701474 created "2020-03-06" @default.
- W3008701474 creator A5009213773 @default.
- W3008701474 creator A5015179665 @default.
- W3008701474 creator A5057766359 @default.
- W3008701474 creator A5065101788 @default.
- W3008701474 creator A5074271230 @default.
- W3008701474 creator A5087616390 @default.
- W3008701474 date "2020-03-01" @default.
- W3008701474 modified "2023-10-18" @default.
- W3008701474 title "Optimization of Dielectric Barrier Discharge Plasma Actuators for Icing Control" @default.
- W3008701474 cites W1525529112 @default.
- W3008701474 cites W1974320357 @default.
- W3008701474 cites W1994883204 @default.
- W3008701474 cites W2004073007 @default.
- W3008701474 cites W2008097933 @default.
- W3008701474 cites W2015696907 @default.
- W3008701474 cites W2017081435 @default.
- W3008701474 cites W2019143983 @default.
- W3008701474 cites W2049503982 @default.
- W3008701474 cites W2068107114 @default.
- W3008701474 cites W2071102550 @default.
- W3008701474 cites W2082692056 @default.
- W3008701474 cites W2082936420 @default.
- W3008701474 cites W2099939997 @default.
- W3008701474 cites W2109762097 @default.
- W3008701474 cites W2159837754 @default.
- W3008701474 cites W2317658858 @default.
- W3008701474 cites W2332395903 @default.
- W3008701474 cites W2415487091 @default.
- W3008701474 cites W2469941562 @default.
- W3008701474 cites W2520923860 @default.
- W3008701474 cites W2539967036 @default.
- W3008701474 cites W2549533765 @default.
- W3008701474 cites W2585271559 @default.
- W3008701474 cites W2591413258 @default.
- W3008701474 cites W2605791660 @default.
- W3008701474 cites W2781566152 @default.
- W3008701474 cites W2795975535 @default.
- W3008701474 cites W2803876923 @default.
- W3008701474 cites W2922087652 @default.
- W3008701474 doi "https://doi.org/10.2514/1.c035697" @default.
- W3008701474 hasPublicationYear "2020" @default.
- W3008701474 type Work @default.
- W3008701474 sameAs 3008701474 @default.
- W3008701474 citedByCount "21" @default.
- W3008701474 countsByYear W30087014742021 @default.
- W3008701474 countsByYear W30087014742022 @default.
- W3008701474 countsByYear W30087014742023 @default.
- W3008701474 crossrefType "journal-article" @default.
- W3008701474 hasAuthorship W3008701474A5009213773 @default.
- W3008701474 hasAuthorship W3008701474A5015179665 @default.
- W3008701474 hasAuthorship W3008701474A5057766359 @default.
- W3008701474 hasAuthorship W3008701474A5065101788 @default.
- W3008701474 hasAuthorship W3008701474A5074271230 @default.
- W3008701474 hasAuthorship W3008701474A5087616390 @default.
- W3008701474 hasConcept C119599485 @default.
- W3008701474 hasConcept C121332964 @default.
- W3008701474 hasConcept C127413603 @default.
- W3008701474 hasConcept C133386390 @default.
- W3008701474 hasConcept C146978453 @default.
- W3008701474 hasConcept C153294291 @default.
- W3008701474 hasConcept C154945302 @default.
- W3008701474 hasConcept C172707124 @default.
- W3008701474 hasConcept C18590420 @default.
- W3008701474 hasConcept C192562407 @default.
- W3008701474 hasConcept C2775924081 @default.
- W3008701474 hasConcept C2781439067 @default.
- W3008701474 hasConcept C41008148 @default.
- W3008701474 hasConcept C47446073 @default.
- W3008701474 hasConcept C49040817 @default.
- W3008701474 hasConcept C57879066 @default.
- W3008701474 hasConcept C62520636 @default.
- W3008701474 hasConcept C82706917 @default.
- W3008701474 hasConcept C89448510 @default.
- W3008701474 hasConceptScore W3008701474C119599485 @default.
- W3008701474 hasConceptScore W3008701474C121332964 @default.
- W3008701474 hasConceptScore W3008701474C127413603 @default.
- W3008701474 hasConceptScore W3008701474C133386390 @default.
- W3008701474 hasConceptScore W3008701474C146978453 @default.
- W3008701474 hasConceptScore W3008701474C153294291 @default.
- W3008701474 hasConceptScore W3008701474C154945302 @default.
- W3008701474 hasConceptScore W3008701474C172707124 @default.
- W3008701474 hasConceptScore W3008701474C18590420 @default.
- W3008701474 hasConceptScore W3008701474C192562407 @default.
- W3008701474 hasConceptScore W3008701474C2775924081 @default.
- W3008701474 hasConceptScore W3008701474C2781439067 @default.
- W3008701474 hasConceptScore W3008701474C41008148 @default.
- W3008701474 hasConceptScore W3008701474C47446073 @default.
- W3008701474 hasConceptScore W3008701474C49040817 @default.
- W3008701474 hasConceptScore W3008701474C57879066 @default.
- W3008701474 hasConceptScore W3008701474C62520636 @default.
- W3008701474 hasConceptScore W3008701474C82706917 @default.
- W3008701474 hasConceptScore W3008701474C89448510 @default.
- W3008701474 hasFunder F4320321001 @default.
- W3008701474 hasFunder F4320322857 @default.
- W3008701474 hasIssue "2" @default.
- W3008701474 hasLocation W30087014741 @default.