Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008784489> ?p ?o ?g. }
- W3008784489 abstract "In this thesis, robust methods based on the notion of shrinkage are proposed for outlier detection and robust regression. A collection of robust Mahalanobis distances is proposed for multivariate outlier detection. The robust intensity and scaling factors, needed to define the shrinkage of the robust estimators used in the distances, are optimally estimated. Some properties are investigated, such as the affine equivariance and the breakdown value. The performance of the proposal is illustrated through the comparison to other robust techniques from the literature, in a simulation study and with a real example of breast cancer data. The robust alternatives are also reviewed, highlighting their advantages and disadvantages. The behavior when the underlying distribution is heavy-tailed or skewed, shows the appropriateness of the proposed method when we deviate from the common assumption of normality. The resulting high true positive rates and low false positive rates in the vast majority of cases, as well as the significantly smaller computational time show the advantages of the proposal.On the other hand, a robust estimator is proposed for the parameters that characterize the linear regression problem. It is also based on the notion of shrinkages. A thorough simulation study is conducted to investigate the efficiency with Normal and heavy-tailed errors, the robustness under contamination, the computational times, the affine equivariance and breakdown value of the regression estimator. It is compared to the classical Ordinary Least Squares (OLS) approach and the robust alternatives from the literature, which are also briefly reviewed in the thesis. Two classical data-sets often used in the literature and a real socio-economic data-set about the Living Environment Deprivation (LED) of areas in Liverpool (UK), are studied. The results from the simulations and the real data examples show the advantages of the proposed robust estimator in regression. Also, with the LED data-set it is also shown that the proposed robust regression method has improved performance than machine learning techniques previously used for this data, with the advantage of interpretability.Furthermore, an adaptive threshold, that depends on the sample size and the dimension of the data, is introduced for the proposed robust Mahalanobis distance based on shrinkage estimators. The cut-off is different than the classical choice of the 0.975 chi-square quantile providing a more accurate method to detect multivariate outliers. A simulation study is done to check the performance improvement of the new cut-off against the classical. The adjusted quantile shows improved performance, even when the underlying distribution is heavy-tailed or skewed. The method is illustrated using the LED data-set, and the results demonstrate the additional advantages of the adaptive threshold for the regression problem." @default.
- W3008784489 created "2020-03-06" @default.
- W3008784489 creator A5048939994 @default.
- W3008784489 date "2019-01-01" @default.
- W3008784489 modified "2023-09-24" @default.
- W3008784489 title "Robust methods based on shrinkage" @default.
- W3008784489 cites W149129625 @default.
- W3008784489 cites W1501401766 @default.
- W3008784489 cites W1510731595 @default.
- W3008784489 cites W1540596182 @default.
- W3008784489 cites W1584308190 @default.
- W3008784489 cites W1584444527 @default.
- W3008784489 cites W172260869 @default.
- W3008784489 cites W1963041479 @default.
- W3008784489 cites W1968433998 @default.
- W3008784489 cites W1969939394 @default.
- W3008784489 cites W1971460477 @default.
- W3008784489 cites W1973744648 @default.
- W3008784489 cites W1975434585 @default.
- W3008784489 cites W1975900269 @default.
- W3008784489 cites W1976160686 @default.
- W3008784489 cites W1980262437 @default.
- W3008784489 cites W1982182504 @default.
- W3008784489 cites W1984050705 @default.
- W3008784489 cites W1986008049 @default.
- W3008784489 cites W1989638282 @default.
- W3008784489 cites W1996584951 @default.
- W3008784489 cites W2000724964 @default.
- W3008784489 cites W2011627547 @default.
- W3008784489 cites W2012712694 @default.
- W3008784489 cites W2017113750 @default.
- W3008784489 cites W2023229267 @default.
- W3008784489 cites W2028080004 @default.
- W3008784489 cites W2029745943 @default.
- W3008784489 cites W2030296667 @default.
- W3008784489 cites W2031709328 @default.
- W3008784489 cites W2032689314 @default.
- W3008784489 cites W2034694694 @default.
- W3008784489 cites W2035392043 @default.
- W3008784489 cites W2039111546 @default.
- W3008784489 cites W2041057101 @default.
- W3008784489 cites W2046033161 @default.
- W3008784489 cites W2046936114 @default.
- W3008784489 cites W2048699556 @default.
- W3008784489 cites W2049454545 @default.
- W3008784489 cites W2052740976 @default.
- W3008784489 cites W205891469 @default.
- W3008784489 cites W2059659103 @default.
- W3008784489 cites W2060731933 @default.
- W3008784489 cites W2061747538 @default.
- W3008784489 cites W2062112832 @default.
- W3008784489 cites W2062125287 @default.
- W3008784489 cites W2063717353 @default.
- W3008784489 cites W2064771454 @default.
- W3008784489 cites W2065742895 @default.
- W3008784489 cites W2065914419 @default.
- W3008784489 cites W2066592876 @default.
- W3008784489 cites W2068302187 @default.
- W3008784489 cites W2072629975 @default.
- W3008784489 cites W2076486155 @default.
- W3008784489 cites W2081862629 @default.
- W3008784489 cites W2082518797 @default.
- W3008784489 cites W2086465016 @default.
- W3008784489 cites W2096545952 @default.
- W3008784489 cites W2103086259 @default.
- W3008784489 cites W2106053110 @default.
- W3008784489 cites W2107554480 @default.
- W3008784489 cites W2107669723 @default.
- W3008784489 cites W2115972246 @default.
- W3008784489 cites W2117154949 @default.
- W3008784489 cites W2119847443 @default.
- W3008784489 cites W2122271459 @default.
- W3008784489 cites W2129249398 @default.
- W3008784489 cites W2129504210 @default.
- W3008784489 cites W2136179595 @default.
- W3008784489 cites W2144643813 @default.
- W3008784489 cites W2146225536 @default.
- W3008784489 cites W2146346876 @default.
- W3008784489 cites W2152304600 @default.
- W3008784489 cites W2152540970 @default.
- W3008784489 cites W2152701363 @default.
- W3008784489 cites W2157687987 @default.
- W3008784489 cites W2165408259 @default.
- W3008784489 cites W2168812513 @default.
- W3008784489 cites W2171798383 @default.
- W3008784489 cites W2177715853 @default.
- W3008784489 cites W2196404622 @default.
- W3008784489 cites W2275931631 @default.
- W3008784489 cites W2414954445 @default.
- W3008784489 cites W2480283529 @default.
- W3008784489 cites W2583782247 @default.
- W3008784489 cites W2610932088 @default.
- W3008784489 cites W2797774771 @default.
- W3008784489 cites W2890271933 @default.
- W3008784489 cites W2904519850 @default.
- W3008784489 cites W3114932062 @default.
- W3008784489 cites W3123065893 @default.
- W3008784489 cites W36711357 @default.
- W3008784489 cites W46659105 @default.
- W3008784489 cites W47198768 @default.