Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008833651> ?p ?o ?g. }
- W3008833651 endingPage "107560" @default.
- W3008833651 startingPage "107560" @default.
- W3008833651 abstract "In this paper, a Bayesian model is adopted for sparse signal recovery where sparsity is enforced on the reconstructed coefficients via probabilistic priors. In particular, we focus on a group spike-and-slab prior and a kernel matrix which capture both the underlying group structure and the element correlation within groups. A novel greedy based group adaptive matching pursuit (GAMP) algorithm is introduced, which integrates both prior parameter learning and intra-group correlation parameter learning into one single problem. The proposed approach improves the reconstruction accuracy and offers strong robustness to signal-to-noise ratio. We consider a fast implementation method of GAMP which applies the preconditioned conjugate gradient method. Simulations, MNIST dataset based experiments and multi-static radar imaging application are used to verify the superior performance of the proposed method over existing techniques." @default.
- W3008833651 created "2020-03-06" @default.
- W3008833651 creator A5007661434 @default.
- W3008833651 creator A5019056615 @default.
- W3008833651 creator A5076758349 @default.
- W3008833651 date "2020-07-01" @default.
- W3008833651 modified "2023-10-16" @default.
- W3008833651 title "Group adaptive matching pursuit with intra-group correlation learning for sparse signal recovery" @default.
- W3008833651 cites W1485275430 @default.
- W3008833651 cites W1663973292 @default.
- W3008833651 cites W1970554427 @default.
- W3008833651 cites W1981157266 @default.
- W3008833651 cites W1991031161 @default.
- W3008833651 cites W1996049583 @default.
- W3008833651 cites W1999974018 @default.
- W3008833651 cites W2007800502 @default.
- W3008833651 cites W2033419225 @default.
- W3008833651 cites W2083042020 @default.
- W3008833651 cites W2097408416 @default.
- W3008833651 cites W2098841537 @default.
- W3008833651 cites W2104266187 @default.
- W3008833651 cites W2112908648 @default.
- W3008833651 cites W2119667497 @default.
- W3008833651 cites W2138019504 @default.
- W3008833651 cites W2146000945 @default.
- W3008833651 cites W2155676512 @default.
- W3008833651 cites W2191998694 @default.
- W3008833651 cites W2250039352 @default.
- W3008833651 cites W2296616510 @default.
- W3008833651 cites W2546307026 @default.
- W3008833651 cites W2753910898 @default.
- W3008833651 cites W2798909945 @default.
- W3008833651 cites W2963993380 @default.
- W3008833651 cites W3099013461 @default.
- W3008833651 cites W3193262203 @default.
- W3008833651 doi "https://doi.org/10.1016/j.sigpro.2020.107560" @default.
- W3008833651 hasPublicationYear "2020" @default.
- W3008833651 type Work @default.
- W3008833651 sameAs 3008833651 @default.
- W3008833651 citedByCount "2" @default.
- W3008833651 countsByYear W30088336512020 @default.
- W3008833651 countsByYear W30088336512021 @default.
- W3008833651 crossrefType "journal-article" @default.
- W3008833651 hasAuthorship W3008833651A5007661434 @default.
- W3008833651 hasAuthorship W3008833651A5019056615 @default.
- W3008833651 hasAuthorship W3008833651A5076758349 @default.
- W3008833651 hasConcept C104317684 @default.
- W3008833651 hasConcept C107673813 @default.
- W3008833651 hasConcept C11413529 @default.
- W3008833651 hasConcept C114614502 @default.
- W3008833651 hasConcept C121332964 @default.
- W3008833651 hasConcept C124851039 @default.
- W3008833651 hasConcept C126255220 @default.
- W3008833651 hasConcept C153180895 @default.
- W3008833651 hasConcept C154945302 @default.
- W3008833651 hasConcept C156872377 @default.
- W3008833651 hasConcept C163716315 @default.
- W3008833651 hasConcept C177769412 @default.
- W3008833651 hasConcept C185592680 @default.
- W3008833651 hasConcept C2778459887 @default.
- W3008833651 hasConcept C33923547 @default.
- W3008833651 hasConcept C41008148 @default.
- W3008833651 hasConcept C55493867 @default.
- W3008833651 hasConcept C62520636 @default.
- W3008833651 hasConcept C63479239 @default.
- W3008833651 hasConcept C74193536 @default.
- W3008833651 hasConceptScore W3008833651C104317684 @default.
- W3008833651 hasConceptScore W3008833651C107673813 @default.
- W3008833651 hasConceptScore W3008833651C11413529 @default.
- W3008833651 hasConceptScore W3008833651C114614502 @default.
- W3008833651 hasConceptScore W3008833651C121332964 @default.
- W3008833651 hasConceptScore W3008833651C124851039 @default.
- W3008833651 hasConceptScore W3008833651C126255220 @default.
- W3008833651 hasConceptScore W3008833651C153180895 @default.
- W3008833651 hasConceptScore W3008833651C154945302 @default.
- W3008833651 hasConceptScore W3008833651C156872377 @default.
- W3008833651 hasConceptScore W3008833651C163716315 @default.
- W3008833651 hasConceptScore W3008833651C177769412 @default.
- W3008833651 hasConceptScore W3008833651C185592680 @default.
- W3008833651 hasConceptScore W3008833651C2778459887 @default.
- W3008833651 hasConceptScore W3008833651C33923547 @default.
- W3008833651 hasConceptScore W3008833651C41008148 @default.
- W3008833651 hasConceptScore W3008833651C55493867 @default.
- W3008833651 hasConceptScore W3008833651C62520636 @default.
- W3008833651 hasConceptScore W3008833651C63479239 @default.
- W3008833651 hasConceptScore W3008833651C74193536 @default.
- W3008833651 hasFunder F4320321001 @default.
- W3008833651 hasFunder F4320322769 @default.
- W3008833651 hasFunder F4320335833 @default.
- W3008833651 hasLocation W30088336511 @default.
- W3008833651 hasOpenAccess W3008833651 @default.
- W3008833651 hasPrimaryLocation W30088336511 @default.
- W3008833651 hasRelatedWork W1973029877 @default.
- W3008833651 hasRelatedWork W2244779222 @default.
- W3008833651 hasRelatedWork W2314695925 @default.
- W3008833651 hasRelatedWork W2353443191 @default.
- W3008833651 hasRelatedWork W2354465635 @default.
- W3008833651 hasRelatedWork W2551136801 @default.