Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008834654> ?p ?o ?g. }
- W3008834654 endingPage "1037" @default.
- W3008834654 startingPage "1017" @default.
- W3008834654 abstract "Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sciences. There can be no argument that this technique is incredibly successful in image recognition with immediate applications in diagnostics including electrophysiology, radiology, or pathology, where we have access to massive amounts of annotated data. However, machine learning often performs poorly in prognosis, especially when dealing with sparse data. This is a field where classical physics-based simulation seems to remain irreplaceable. In this review, we identify areas in the biomedical sciences where machine learning and multiscale modeling can mutually benefit from one another: Machine learning can integrate physics-based knowledge in the form of governing equations, boundary conditions, or constraints to manage ill-posted problems and robustly handle sparse and noisy data; multiscale modeling can integrate machine learning to create surrogate models, identify system dynamics and parameters, analyze sensitivities, and quantify uncertainty to bridge the scales and understand the emergence of function. With a view towards applications in the life sciences, we discuss the state of the art of combining machine learning and multiscale modeling, identify applications and opportunities, raise open questions, and address potential challenges and limitations. We anticipate that it will stimulate discussion within the community of computational mechanics and reach out to other disciplines including mathematics, statistics, computer science, artificial intelligence, biomedicine, systems biology, and precision medicine to join forces towards creating robust and efficient models for biological systems." @default.
- W3008834654 created "2020-03-06" @default.
- W3008834654 creator A5000234159 @default.
- W3008834654 creator A5002562845 @default.
- W3008834654 creator A5009658255 @default.
- W3008834654 creator A5013146110 @default.
- W3008834654 creator A5018123365 @default.
- W3008834654 creator A5021640058 @default.
- W3008834654 creator A5028222728 @default.
- W3008834654 creator A5056426700 @default.
- W3008834654 creator A5058577320 @default.
- W3008834654 creator A5061904937 @default.
- W3008834654 creator A5073356597 @default.
- W3008834654 creator A5082122443 @default.
- W3008834654 date "2020-02-17" @default.
- W3008834654 modified "2023-10-18" @default.
- W3008834654 title "Multiscale Modeling Meets Machine Learning: What Can We Learn?" @default.
- W3008834654 cites W1573873327 @default.
- W3008834654 cites W1932198206 @default.
- W3008834654 cites W1952213740 @default.
- W3008834654 cites W1967465908 @default.
- W3008834654 cites W1970696723 @default.
- W3008834654 cites W1970785618 @default.
- W3008834654 cites W1973333099 @default.
- W3008834654 cites W1978486653 @default.
- W3008834654 cites W1985540849 @default.
- W3008834654 cites W1985763935 @default.
- W3008834654 cites W1992170087 @default.
- W3008834654 cites W1995647913 @default.
- W3008834654 cites W2004235182 @default.
- W3008834654 cites W2004303971 @default.
- W3008834654 cites W2006335602 @default.
- W3008834654 cites W2019143734 @default.
- W3008834654 cites W2028912110 @default.
- W3008834654 cites W2047480488 @default.
- W3008834654 cites W2055696140 @default.
- W3008834654 cites W2059116590 @default.
- W3008834654 cites W2059224163 @default.
- W3008834654 cites W2063167928 @default.
- W3008834654 cites W2067696442 @default.
- W3008834654 cites W2075161553 @default.
- W3008834654 cites W2079199763 @default.
- W3008834654 cites W2093453132 @default.
- W3008834654 cites W2107306733 @default.
- W3008834654 cites W2107710616 @default.
- W3008834654 cites W2109389220 @default.
- W3008834654 cites W2117179898 @default.
- W3008834654 cites W2131414969 @default.
- W3008834654 cites W2154497431 @default.
- W3008834654 cites W2161661378 @default.
- W3008834654 cites W2163300538 @default.
- W3008834654 cites W2167154952 @default.
- W3008834654 cites W2177870565 @default.
- W3008834654 cites W2239232218 @default.
- W3008834654 cites W2291401466 @default.
- W3008834654 cites W2300160671 @default.
- W3008834654 cites W2306891483 @default.
- W3008834654 cites W2346094579 @default.
- W3008834654 cites W2399435825 @default.
- W3008834654 cites W2507348356 @default.
- W3008834654 cites W2513008430 @default.
- W3008834654 cites W2525748878 @default.
- W3008834654 cites W2533503574 @default.
- W3008834654 cites W2550848904 @default.
- W3008834654 cites W2556428520 @default.
- W3008834654 cites W2573864470 @default.
- W3008834654 cites W2581082771 @default.
- W3008834654 cites W2586938721 @default.
- W3008834654 cites W2600484686 @default.
- W3008834654 cites W2612469205 @default.
- W3008834654 cites W2613097264 @default.
- W3008834654 cites W2622514185 @default.
- W3008834654 cites W2624967967 @default.
- W3008834654 cites W2625995436 @default.
- W3008834654 cites W2626846425 @default.
- W3008834654 cites W2731805355 @default.
- W3008834654 cites W2738724892 @default.
- W3008834654 cites W2742924364 @default.
- W3008834654 cites W2745110207 @default.
- W3008834654 cites W2748151855 @default.
- W3008834654 cites W2754286478 @default.
- W3008834654 cites W2783788528 @default.
- W3008834654 cites W2784634491 @default.
- W3008834654 cites W2785184350 @default.
- W3008834654 cites W2786235792 @default.
- W3008834654 cites W2786689981 @default.
- W3008834654 cites W2790089765 @default.
- W3008834654 cites W2796022617 @default.
- W3008834654 cites W2802118254 @default.
- W3008834654 cites W2803477776 @default.
- W3008834654 cites W2803629276 @default.
- W3008834654 cites W2806157403 @default.
- W3008834654 cites W2806642578 @default.
- W3008834654 cites W2883136416 @default.
- W3008834654 cites W2883583109 @default.
- W3008834654 cites W2885057657 @default.
- W3008834654 cites W2888380167 @default.
- W3008834654 cites W2897675393 @default.