Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008903779> ?p ?o ?g. }
- W3008903779 endingPage "116614" @default.
- W3008903779 startingPage "116614" @default.
- W3008903779 abstract "One of the most controversial procedures in the analysis of resting-state functional magnetic resonance imaging (rsfMRI) data is global signal regression (GSR): the removal, via linear regression, of the mean signal averaged over the entire brain. On one hand, the global mean signal contains variance associated with respiratory, scanner-, and motion-related artifacts, and its removal via GSR improves various quality-control metrics, enhances the anatomical specificity of functional-connectivity patterns, and can increase the behavioral variance explained by such patterns. On the other hand, GSR alters the distribution of regional signal correlations in the brain, can induce artifactual anticorrelations, may remove real neural signal, and can distort case-control comparisons of functional-connectivity measures. Global signal fluctuations can be identified visually from a matrix of colour-coded signal intensities, called a carpet plot, in which rows represent voxels and columns represent time. Prior to GSR, large, periodic bands of coherent signal changes that affect most of the brain are often apparent; after GSR, these apparently global changes are greatly diminished. Here, using three independent datasets, we show that reordering carpet plots to emphasize cluster structure in the data reveals a greater diversity of spatially widespread signal deflections (WSDs) than previously thought. Their precise form varies across time and participants, and GSR is only effective in removing specific kinds of WSDs. We present an alternative, iterative correction method called Diffuse Cluster Estimation and Regression (DiCER), that identifies representative signals associated with large clusters of coherent voxels. DiCER is more effective than GSR at removing diverse WSDs as visualized in carpet plots, reduces correlations between functional connectivity and head-motion estimates, reduces inter-individual variability in global correlation structure, and results in comparable or improved identification of canonical functional-connectivity networks. Using task fMRI data across 47 contrasts from 7 tasks in the Human Connectome Project, we also present evidence that DiCER is more successful than GSR in preserving the spatial structure of expected task-related activation patterns. Our findings indicate that care must be exercised when examining WSDs (and their possible removal) in rsfMRI data, and that DiCER is a viable alternative to GSR for removing anatomically widespread and temporally coherent signals. All code for implementing DiCER and replicating our results is available at https://github.com/BMHLab/DiCER." @default.
- W3008903779 created "2020-03-06" @default.
- W3008903779 creator A5037599926 @default.
- W3008903779 creator A5055695977 @default.
- W3008903779 creator A5076633128 @default.
- W3008903779 creator A5086429842 @default.
- W3008903779 creator A5087949323 @default.
- W3008903779 date "2020-05-01" @default.
- W3008903779 modified "2023-10-17" @default.
- W3008903779 title "Identifying and removing widespread signal deflections from fMRI data: Rethinking the global signal regression problem" @default.
- W3008903779 cites W1970695058 @default.
- W3008903779 cites W1970928383 @default.
- W3008903779 cites W1972336901 @default.
- W3008903779 cites W1972690852 @default.
- W3008903779 cites W1973776237 @default.
- W3008903779 cites W1980527160 @default.
- W3008903779 cites W1983208069 @default.
- W3008903779 cites W1985821218 @default.
- W3008903779 cites W1986387796 @default.
- W3008903779 cites W1987638762 @default.
- W3008903779 cites W1987777969 @default.
- W3008903779 cites W1989848202 @default.
- W3008903779 cites W1996196481 @default.
- W3008903779 cites W1997298866 @default.
- W3008903779 cites W2005238835 @default.
- W3008903779 cites W2007318901 @default.
- W3008903779 cites W2020044743 @default.
- W3008903779 cites W2020333990 @default.
- W3008903779 cites W2024729467 @default.
- W3008903779 cites W2025009638 @default.
- W3008903779 cites W2031292341 @default.
- W3008903779 cites W2035809725 @default.
- W3008903779 cites W2041127567 @default.
- W3008903779 cites W2044820817 @default.
- W3008903779 cites W2047453615 @default.
- W3008903779 cites W2048857243 @default.
- W3008903779 cites W2054014224 @default.
- W3008903779 cites W2063993331 @default.
- W3008903779 cites W2068782491 @default.
- W3008903779 cites W2071300176 @default.
- W3008903779 cites W2073588997 @default.
- W3008903779 cites W2078563124 @default.
- W3008903779 cites W2079247946 @default.
- W3008903779 cites W2079450984 @default.
- W3008903779 cites W2090687144 @default.
- W3008903779 cites W2107499714 @default.
- W3008903779 cites W2111902267 @default.
- W3008903779 cites W2113619522 @default.
- W3008903779 cites W2117340355 @default.
- W3008903779 cites W2117621792 @default.
- W3008903779 cites W2118366819 @default.
- W3008903779 cites W2124141514 @default.
- W3008903779 cites W2126693856 @default.
- W3008903779 cites W2130010412 @default.
- W3008903779 cites W2135475851 @default.
- W3008903779 cites W2136573752 @default.
- W3008903779 cites W2137526583 @default.
- W3008903779 cites W2138092999 @default.
- W3008903779 cites W2145729305 @default.
- W3008903779 cites W2149240084 @default.
- W3008903779 cites W2151721316 @default.
- W3008903779 cites W2157446241 @default.
- W3008903779 cites W2158611196 @default.
- W3008903779 cites W2169787465 @default.
- W3008903779 cites W2325305575 @default.
- W3008903779 cites W2334220226 @default.
- W3008903779 cites W2409584775 @default.
- W3008903779 cites W2465207860 @default.
- W3008903779 cites W2499800833 @default.
- W3008903779 cites W2509256556 @default.
- W3008903779 cites W2515376299 @default.
- W3008903779 cites W2535415557 @default.
- W3008903779 cites W2537382818 @default.
- W3008903779 cites W2557111525 @default.
- W3008903779 cites W2588517580 @default.
- W3008903779 cites W2590234371 @default.
- W3008903779 cites W2591418495 @default.
- W3008903779 cites W2593796352 @default.
- W3008903779 cites W2597348720 @default.
- W3008903779 cites W2602144346 @default.
- W3008903779 cites W2607778875 @default.
- W3008903779 cites W2755454636 @default.
- W3008903779 cites W2784924902 @default.
- W3008903779 cites W2786172279 @default.
- W3008903779 cites W2791194758 @default.
- W3008903779 cites W2888688605 @default.
- W3008903779 cites W2919999444 @default.
- W3008903779 cites W2942021648 @default.
- W3008903779 cites W2950870790 @default.
- W3008903779 cites W2951412139 @default.
- W3008903779 cites W2951583631 @default.
- W3008903779 cites W2952766316 @default.
- W3008903779 cites W2953090092 @default.
- W3008903779 cites W4235770099 @default.
- W3008903779 doi "https://doi.org/10.1016/j.neuroimage.2020.116614" @default.
- W3008903779 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32084564" @default.
- W3008903779 hasPublicationYear "2020" @default.
- W3008903779 type Work @default.