Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008957938> ?p ?o ?g. }
- W3008957938 abstract "<div>Visual navigation tasks in real-world environments often require both self-motion and place recognition feedback. While deep reinforcement learning has shown success in solving these perception and decision-making problems in an end-to-end manner, these algorithms require large amounts of experience to learn navigation policies from high-dimensional data, which is generally impractical for real robots due to sample complexity. In this paper, we address these problems with two main contributions. We first leverage place recognition and deep learning techniques combined with goal destination feedback to generate compact, bimodal image representations that can then be used to effectively learn control policies from a small amount of experience. Second, we present an interactive framework, CityLearn, that enables for the first time training and deployment of navigation algorithms across city-sized, realistic environments with extreme visual appearance changes. CityLearn features more than 10 benchmark datasets, often used in visual place recognition and autonomous driving research, including over 100 recorded traversals across 60 cities around the world. We evaluate our approach on two CityLearn environments, training our navigation policy on a single traversal. Results show our method can be over 2 orders of magnitude faster than when using raw images, and can also generalize across extreme visual changes including day to night and summer to winter transitions.</div>" @default.
- W3008957938 created "2020-03-06" @default.
- W3008957938 creator A5072524447 @default.
- W3008957938 creator A5078340555 @default.
- W3008957938 date "2020-04-05" @default.
- W3008957938 modified "2023-10-15" @default.
- W3008957938 title "CityLearn: Diverse Real-World Environments for Sample-Efficient Navigation Policy Learning" @default.
- W3008957938 cites W1162411702 @default.
- W3008957938 cites W155607310 @default.
- W3008957938 cites W1577509784 @default.
- W3008957938 cites W1595483645 @default.
- W3008957938 cites W1686810756 @default.
- W3008957938 cites W1749678571 @default.
- W3008957938 cites W1771410628 @default.
- W3008957938 cites W1981824936 @default.
- W3008957938 cites W2035430745 @default.
- W3008957938 cites W2052579003 @default.
- W3008957938 cites W2064675550 @default.
- W3008957938 cites W2108598243 @default.
- W3008957938 cites W2109197213 @default.
- W3008957938 cites W2110405746 @default.
- W3008957938 cites W2115579991 @default.
- W3008957938 cites W2125873991 @default.
- W3008957938 cites W2179042386 @default.
- W3008957938 cites W2194775991 @default.
- W3008957938 cites W2284029970 @default.
- W3008957938 cites W2296073425 @default.
- W3008957938 cites W2342383553 @default.
- W3008957938 cites W2557283755 @default.
- W3008957938 cites W2558027072 @default.
- W3008957938 cites W2559767995 @default.
- W3008957938 cites W2567015638 @default.
- W3008957938 cites W2580440899 @default.
- W3008957938 cites W2585954273 @default.
- W3008957938 cites W2593841437 @default.
- W3008957938 cites W26944259 @default.
- W3008957938 cites W2736601468 @default.
- W3008957938 cites W2740418457 @default.
- W3008957938 cites W2744874208 @default.
- W3008957938 cites W2772390515 @default.
- W3008957938 cites W2776202271 @default.
- W3008957938 cites W2782811125 @default.
- W3008957938 cites W2783375473 @default.
- W3008957938 cites W2785527097 @default.
- W3008957938 cites W2786036274 @default.
- W3008957938 cites W2786658125 @default.
- W3008957938 cites W2789510920 @default.
- W3008957938 cites W2800142021 @default.
- W3008957938 cites W2835434549 @default.
- W3008957938 cites W2885284380 @default.
- W3008957938 cites W2889987506 @default.
- W3008957938 cites W2914993068 @default.
- W3008957938 cites W2916040547 @default.
- W3008957938 cites W2919744459 @default.
- W3008957938 cites W2923531447 @default.
- W3008957938 cites W2962801861 @default.
- W3008957938 cites W2962887844 @default.
- W3008957938 cites W2962958942 @default.
- W3008957938 cites W2963003879 @default.
- W3008957938 cites W2963012943 @default.
- W3008957938 cites W2963041685 @default.
- W3008957938 cites W2963339673 @default.
- W3008957938 cites W2963538243 @default.
- W3008957938 cites W2963867315 @default.
- W3008957938 cites W2963946945 @default.
- W3008957938 cites W2964156323 @default.
- W3008957938 cites W2964262254 @default.
- W3008957938 cites W2967842981 @default.
- W3008957938 cites W2967853831 @default.
- W3008957938 cites W2973689592 @default.
- W3008957938 cites W2979727876 @default.
- W3008957938 cites W2980557561 @default.
- W3008957938 cites W2997164612 @default.
- W3008957938 cites W2997886377 @default.
- W3008957938 cites W3003296750 @default.
- W3008957938 cites W301022506 @default.
- W3008957938 cites W3029192705 @default.
- W3008957938 cites W3035574168 @default.
- W3008957938 cites W3098873762 @default.
- W3008957938 cites W3105479692 @default.
- W3008957938 cites W3084181639 @default.
- W3008957938 doi "https://doi.org/10.36227/techrxiv.12063582" @default.
- W3008957938 hasPublicationYear "2020" @default.
- W3008957938 type Work @default.
- W3008957938 sameAs 3008957938 @default.
- W3008957938 citedByCount "0" @default.
- W3008957938 crossrefType "posted-content" @default.
- W3008957938 hasAuthorship W3008957938A5072524447 @default.
- W3008957938 hasAuthorship W3008957938A5078340555 @default.
- W3008957938 hasBestOaLocation W30089579381 @default.
- W3008957938 hasConcept C105339364 @default.
- W3008957938 hasConcept C111919701 @default.
- W3008957938 hasConcept C11413529 @default.
- W3008957938 hasConcept C119857082 @default.
- W3008957938 hasConcept C140745168 @default.
- W3008957938 hasConcept C153083717 @default.
- W3008957938 hasConcept C154945302 @default.
- W3008957938 hasConcept C169760540 @default.
- W3008957938 hasConcept C185592680 @default.
- W3008957938 hasConcept C185798385 @default.