Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008981903> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3008981903 abstract "Crowd scene analysis has received a lot of attention recently due to the wide variety of applications, for instance, forensic science, urban planning, surveillance and security. In this context, a challenging task is known as crowd counting, whose main purpose is to estimate the number of people present in a single image. A Multi-Stream Convolutional Neural Network is developed and evaluated in this work, which receives an image as input and produces a density map that represents the spatial distribution of people in an end-to-end fashion. In order to address complex crowd counting issues, such as extremely unconstrained scale and perspective changes, the network architecture utilizes receptive fields with different size filters for each stream. In addition, we investigate the influence of the two most common fashions on the generation of ground truths and propose a hybrid method based on tiny face detection and scale interpolation. Experiments conducted on two challenging datasets, UCF-CC-50 and ShanghaiTech, demonstrate that using our ground truth generation methods achieves superior results." @default.
- W3008981903 created "2020-03-06" @default.
- W3008981903 creator A5037945238 @default.
- W3008981903 creator A5041630241 @default.
- W3008981903 creator A5065725754 @default.
- W3008981903 creator A5091228807 @default.
- W3008981903 date "2020-02-23" @default.
- W3008981903 modified "2023-09-25" @default.
- W3008981903 title "Multi-Stream Networks and Ground-Truth Generation for Crowd Counting" @default.
- W3008981903 cites W2072232009 @default.
- W3008981903 cites W2463631526 @default.
- W3008981903 cites W2517615595 @default.
- W3008981903 cites W2519281173 @default.
- W3008981903 cites W2520826941 @default.
- W3008981903 cites W2579152745 @default.
- W3008981903 cites W2729018917 @default.
- W3008981903 cites W2741077351 @default.
- W3008981903 cites W2793254521 @default.
- W3008981903 cites W2798490576 @default.
- W3008981903 cites W2811079244 @default.
- W3008981903 cites W2895051362 @default.
- W3008981903 cites W2962720716 @default.
- W3008981903 cites W2963693541 @default.
- W3008981903 cites W2964264515 @default.
- W3008981903 cites W2964307651 @default.
- W3008981903 cites W2966221843 @default.
- W3008981903 cites W2966271765 @default.
- W3008981903 cites W2967069910 @default.
- W3008981903 hasPublicationYear "2020" @default.
- W3008981903 type Work @default.
- W3008981903 sameAs 3008981903 @default.
- W3008981903 citedByCount "0" @default.
- W3008981903 crossrefType "posted-content" @default.
- W3008981903 hasAuthorship W3008981903A5037945238 @default.
- W3008981903 hasAuthorship W3008981903A5041630241 @default.
- W3008981903 hasAuthorship W3008981903A5065725754 @default.
- W3008981903 hasAuthorship W3008981903A5091228807 @default.
- W3008981903 hasConcept C115961682 @default.
- W3008981903 hasConcept C12713177 @default.
- W3008981903 hasConcept C137800194 @default.
- W3008981903 hasConcept C144024400 @default.
- W3008981903 hasConcept C146849305 @default.
- W3008981903 hasConcept C153180895 @default.
- W3008981903 hasConcept C154945302 @default.
- W3008981903 hasConcept C166957645 @default.
- W3008981903 hasConcept C205649164 @default.
- W3008981903 hasConcept C2778755073 @default.
- W3008981903 hasConcept C2779304628 @default.
- W3008981903 hasConcept C2779343474 @default.
- W3008981903 hasConcept C31972630 @default.
- W3008981903 hasConcept C36289849 @default.
- W3008981903 hasConcept C41008148 @default.
- W3008981903 hasConcept C58640448 @default.
- W3008981903 hasConcept C81363708 @default.
- W3008981903 hasConceptScore W3008981903C115961682 @default.
- W3008981903 hasConceptScore W3008981903C12713177 @default.
- W3008981903 hasConceptScore W3008981903C137800194 @default.
- W3008981903 hasConceptScore W3008981903C144024400 @default.
- W3008981903 hasConceptScore W3008981903C146849305 @default.
- W3008981903 hasConceptScore W3008981903C153180895 @default.
- W3008981903 hasConceptScore W3008981903C154945302 @default.
- W3008981903 hasConceptScore W3008981903C166957645 @default.
- W3008981903 hasConceptScore W3008981903C205649164 @default.
- W3008981903 hasConceptScore W3008981903C2778755073 @default.
- W3008981903 hasConceptScore W3008981903C2779304628 @default.
- W3008981903 hasConceptScore W3008981903C2779343474 @default.
- W3008981903 hasConceptScore W3008981903C31972630 @default.
- W3008981903 hasConceptScore W3008981903C36289849 @default.
- W3008981903 hasConceptScore W3008981903C41008148 @default.
- W3008981903 hasConceptScore W3008981903C58640448 @default.
- W3008981903 hasConceptScore W3008981903C81363708 @default.
- W3008981903 hasLocation W30089819031 @default.
- W3008981903 hasOpenAccess W3008981903 @default.
- W3008981903 hasPrimaryLocation W30089819031 @default.
- W3008981903 hasRelatedWork W1928213320 @default.
- W3008981903 hasRelatedWork W2745597836 @default.
- W3008981903 hasRelatedWork W2789535400 @default.
- W3008981903 hasRelatedWork W2811079244 @default.
- W3008981903 hasRelatedWork W2896256573 @default.
- W3008981903 hasRelatedWork W2952968823 @default.
- W3008981903 hasRelatedWork W2966271765 @default.
- W3008981903 hasRelatedWork W2974921234 @default.
- W3008981903 hasRelatedWork W3008553320 @default.
- W3008981903 hasRelatedWork W3016453237 @default.
- W3008981903 hasRelatedWork W3016590280 @default.
- W3008981903 hasRelatedWork W3033648179 @default.
- W3008981903 hasRelatedWork W3046715113 @default.
- W3008981903 hasRelatedWork W3091574678 @default.
- W3008981903 hasRelatedWork W3107511290 @default.
- W3008981903 hasRelatedWork W3110984360 @default.
- W3008981903 hasRelatedWork W3138977062 @default.
- W3008981903 hasRelatedWork W3158659265 @default.
- W3008981903 hasRelatedWork W3170335739 @default.
- W3008981903 hasRelatedWork W3177236073 @default.
- W3008981903 isParatext "false" @default.
- W3008981903 isRetracted "false" @default.
- W3008981903 magId "3008981903" @default.
- W3008981903 workType "article" @default.