Matches in SemOpenAlex for { <https://semopenalex.org/work/W3008994288> ?p ?o ?g. }
- W3008994288 endingPage "114242" @default.
- W3008994288 startingPage "114242" @default.
- W3008994288 abstract "The 10Be, 137Cs and 210Pbxs radionuclide fallout has been used for the last several decades to quantify various soil and geomorphological processes on different time scales. However, a basic assumption of the studies relying on these radionuclides is that they have a strong affinity for soil particles and that their mobility in soil solution and losses through leaching can be neglected. Another area of the scientific literature deals with the radionuclide mobility in soils as solute. In that context, the objective of this work is to determine the pedological conditions under which this hypothesis of poor solute mobility of radionuclides is valid. To this end, meteoric 10Be, 137Cs and 210Pbxs concentrations were measured in six soil profiles representative of 5 soil types contrasted in terms of physico-chemical properties: an Andosol and a Luvisol under pasture, a Ferralsol and a Leptosol under forest and a Podzol both under forest and cultivation. The main soil properties (soil pH, organic carbon (OC) content, particle size distribution and specific extractions) were measured. The <2 µm fraction was extracted to measure radionuclide activities and undertake mineralogical analysis. Results show that meteoric 10Be is significantly leached from soils whose pHw is lower than 5, regardless of the <2 µm particle proportion and Fe oxides content. Significant 137Cs losses through leaching can generally be neglected except in sandy soils whose pHw is lower than 4.5 (Podzol). No significant 210Pbxs losses were evidenced. For the three radionuclides considered, the major part of their budget is associated with the <2 µm fraction. However, concerning the Andosol, the proportion of radionuclide budget associated with the <2 µm fraction represents <40%. With regards to the forested Podzol, two thirds of the 210Pbxs budget is associated with the litter. Well-crystallized Fe oxides, illite and interlayered clay minerals as well as allophane, imogolite and other Al-phases in the Andosol and kaolinite in highly weathered acidic soils (Ferralsol) were found to efficiently retain 10Be. Finally, litter degradation and the content of large particulate organic matter were shown to control 210Pbxs concentrations. As expected, our results highlight strong contrasts in the retention of the considered isotopes according to soil physico-chemical properties. Accordingly, their mobility and losses through solute transport should be considered when using them for quantifying solid transport and future mass transport models must be improved, in particular through the addition of a solute transfer term. Otherwise, soil redistribution might be strongly overestimated for Podzols, Ferralsols and also most probably for other acidic tropical soil types (Nitisols, Acrisols, Plinthisols)." @default.
- W3008994288 created "2020-03-06" @default.
- W3008994288 creator A5013568055 @default.
- W3008994288 creator A5032466742 @default.
- W3008994288 creator A5036456968 @default.
- W3008994288 creator A5060856470 @default.
- W3008994288 creator A5075548332 @default.
- W3008994288 creator A5078406244 @default.
- W3008994288 creator A5079810843 @default.
- W3008994288 creator A5082214255 @default.
- W3008994288 date "2020-05-01" @default.
- W3008994288 modified "2023-10-17" @default.
- W3008994288 title "Retention of 10Be, 137Cs and 210Pbxs in soils: Impact of physico-chemical characteristics" @default.
- W3008994288 cites W1964343243 @default.
- W3008994288 cites W1970144346 @default.
- W3008994288 cites W1972020196 @default.
- W3008994288 cites W1975936955 @default.
- W3008994288 cites W1978953971 @default.
- W3008994288 cites W1979072604 @default.
- W3008994288 cites W1979726916 @default.
- W3008994288 cites W1989329984 @default.
- W3008994288 cites W1990482448 @default.
- W3008994288 cites W1990778015 @default.
- W3008994288 cites W1991121667 @default.
- W3008994288 cites W1993938404 @default.
- W3008994288 cites W1997411048 @default.
- W3008994288 cites W2001281381 @default.
- W3008994288 cites W2002147893 @default.
- W3008994288 cites W2003123232 @default.
- W3008994288 cites W2004560011 @default.
- W3008994288 cites W2007509496 @default.
- W3008994288 cites W2011211428 @default.
- W3008994288 cites W2018362787 @default.
- W3008994288 cites W2020832974 @default.
- W3008994288 cites W2021575156 @default.
- W3008994288 cites W2031561128 @default.
- W3008994288 cites W2033240439 @default.
- W3008994288 cites W2035958660 @default.
- W3008994288 cites W2039504112 @default.
- W3008994288 cites W2053162546 @default.
- W3008994288 cites W2054688678 @default.
- W3008994288 cites W2056471352 @default.
- W3008994288 cites W2057164167 @default.
- W3008994288 cites W2058055260 @default.
- W3008994288 cites W2064034650 @default.
- W3008994288 cites W2064118317 @default.
- W3008994288 cites W2069189532 @default.
- W3008994288 cites W2073382656 @default.
- W3008994288 cites W2073422141 @default.
- W3008994288 cites W2082633570 @default.
- W3008994288 cites W2090719844 @default.
- W3008994288 cites W2092799904 @default.
- W3008994288 cites W2095703525 @default.
- W3008994288 cites W2154768805 @default.
- W3008994288 cites W2157708874 @default.
- W3008994288 cites W2160723796 @default.
- W3008994288 cites W2165680942 @default.
- W3008994288 cites W2269514298 @default.
- W3008994288 cites W2292637959 @default.
- W3008994288 cites W2513269533 @default.
- W3008994288 cites W2522778707 @default.
- W3008994288 cites W2539125137 @default.
- W3008994288 cites W2766183642 @default.
- W3008994288 cites W2885028720 @default.
- W3008994288 cites W2899537800 @default.
- W3008994288 cites W947499014 @default.
- W3008994288 doi "https://doi.org/10.1016/j.geoderma.2020.114242" @default.
- W3008994288 hasPublicationYear "2020" @default.
- W3008994288 type Work @default.
- W3008994288 sameAs 3008994288 @default.
- W3008994288 citedByCount "7" @default.
- W3008994288 countsByYear W30089942882021 @default.
- W3008994288 countsByYear W30089942882022 @default.
- W3008994288 countsByYear W30089942882023 @default.
- W3008994288 crossrefType "journal-article" @default.
- W3008994288 hasAuthorship W3008994288A5013568055 @default.
- W3008994288 hasAuthorship W3008994288A5032466742 @default.
- W3008994288 hasAuthorship W3008994288A5036456968 @default.
- W3008994288 hasAuthorship W3008994288A5060856470 @default.
- W3008994288 hasAuthorship W3008994288A5075548332 @default.
- W3008994288 hasAuthorship W3008994288A5078406244 @default.
- W3008994288 hasAuthorship W3008994288A5079810843 @default.
- W3008994288 hasAuthorship W3008994288A5082214255 @default.
- W3008994288 hasBestOaLocation W30089942881 @default.
- W3008994288 hasConcept C107872376 @default.
- W3008994288 hasConcept C121332964 @default.
- W3008994288 hasConcept C127313418 @default.
- W3008994288 hasConcept C142535954 @default.
- W3008994288 hasConcept C151730666 @default.
- W3008994288 hasConcept C158973077 @default.
- W3008994288 hasConcept C159390177 @default.
- W3008994288 hasConcept C159750122 @default.
- W3008994288 hasConcept C185592680 @default.
- W3008994288 hasConcept C205649164 @default.
- W3008994288 hasConcept C2778053677 @default.
- W3008994288 hasConcept C2779343474 @default.
- W3008994288 hasConcept C39432304 @default.
- W3008994288 hasConcept C62520636 @default.