Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009018976> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3009018976 abstract "The Internet-of-Things (IoT) is growing in importance enabling an increasing number of scientific, industrial, and societal applications. At the same time, the computational capabilities of IoT and edge devices are rapidly improving making them viable for machine learning. Thus, the deployment of machine learning models on the edge is becoming a critical capability. However, such deployments are challenging as edge devices are more resource-constrained than clouds and cannot elastically scale on demand. Moving the application to the cloud can provide more computational power, but raises other challenges, such as security, reliability, and bandwidth. The integration of edge and cloud computing resources is often essential for many applications allowing them to choose the best configuration with respect to their requirements and characteristics, such as data rates and computational complexity. To understand the trade-offs between edge and cloud computing the assessment of different cloud and edge configurations is required. In this paper, we present EdgeInsight, a framework for characterizing and modeling of the inference performance of edge and cloud infrastructures. EdgeInsight enables system builders to size and fine-tune infrastructure parameters for different workloads and applications. We use EdgeInsight to qualitatively and quantitatively study edge and cloud deployment configuration for deep learning inference. Our evaluation shows, that edge inference can outperform cloud inference when model architecture and accuracy, inference framework and pre-processing parameters are carefully selected." @default.
- W3009018976 created "2020-03-06" @default.
- W3009018976 creator A5002603329 @default.
- W3009018976 creator A5077700715 @default.
- W3009018976 date "2019-12-01" @default.
- W3009018976 modified "2023-10-14" @default.
- W3009018976 title "EdgeInsight: Characterizing and Modeling the Performance of Machine Learning Inference on the Edge and Cloud" @default.
- W3009018976 cites W2583832915 @default.
- W3009018976 cites W2598842133 @default.
- W3009018976 cites W2796588635 @default.
- W3009018976 cites W2811365864 @default.
- W3009018976 cites W2913904047 @default.
- W3009018976 cites W2937650374 @default.
- W3009018976 cites W2963884515 @default.
- W3009018976 cites W2966250553 @default.
- W3009018976 doi "https://doi.org/10.1109/bigdata47090.2019.9005455" @default.
- W3009018976 hasPublicationYear "2019" @default.
- W3009018976 type Work @default.
- W3009018976 sameAs 3009018976 @default.
- W3009018976 citedByCount "5" @default.
- W3009018976 countsByYear W30090189762020 @default.
- W3009018976 countsByYear W30090189762022 @default.
- W3009018976 countsByYear W30090189762023 @default.
- W3009018976 crossrefType "proceedings-article" @default.
- W3009018976 hasAuthorship W3009018976A5002603329 @default.
- W3009018976 hasAuthorship W3009018976A5077700715 @default.
- W3009018976 hasConcept C105339364 @default.
- W3009018976 hasConcept C108583219 @default.
- W3009018976 hasConcept C111919701 @default.
- W3009018976 hasConcept C115903868 @default.
- W3009018976 hasConcept C119857082 @default.
- W3009018976 hasConcept C120314980 @default.
- W3009018976 hasConcept C138236772 @default.
- W3009018976 hasConcept C154945302 @default.
- W3009018976 hasConcept C162307627 @default.
- W3009018976 hasConcept C2776214188 @default.
- W3009018976 hasConcept C2778456923 @default.
- W3009018976 hasConcept C41008148 @default.
- W3009018976 hasConcept C79974875 @default.
- W3009018976 hasConceptScore W3009018976C105339364 @default.
- W3009018976 hasConceptScore W3009018976C108583219 @default.
- W3009018976 hasConceptScore W3009018976C111919701 @default.
- W3009018976 hasConceptScore W3009018976C115903868 @default.
- W3009018976 hasConceptScore W3009018976C119857082 @default.
- W3009018976 hasConceptScore W3009018976C120314980 @default.
- W3009018976 hasConceptScore W3009018976C138236772 @default.
- W3009018976 hasConceptScore W3009018976C154945302 @default.
- W3009018976 hasConceptScore W3009018976C162307627 @default.
- W3009018976 hasConceptScore W3009018976C2776214188 @default.
- W3009018976 hasConceptScore W3009018976C2778456923 @default.
- W3009018976 hasConceptScore W3009018976C41008148 @default.
- W3009018976 hasConceptScore W3009018976C79974875 @default.
- W3009018976 hasLocation W30090189761 @default.
- W3009018976 hasOpenAccess W3009018976 @default.
- W3009018976 hasPrimaryLocation W30090189761 @default.
- W3009018976 hasRelatedWork W2804912624 @default.
- W3009018976 hasRelatedWork W2942586735 @default.
- W3009018976 hasRelatedWork W2945616868 @default.
- W3009018976 hasRelatedWork W2966001425 @default.
- W3009018976 hasRelatedWork W2995654207 @default.
- W3009018976 hasRelatedWork W3211931762 @default.
- W3009018976 hasRelatedWork W4225757241 @default.
- W3009018976 hasRelatedWork W4226427977 @default.
- W3009018976 hasRelatedWork W4316660948 @default.
- W3009018976 hasRelatedWork W4321606826 @default.
- W3009018976 isParatext "false" @default.
- W3009018976 isRetracted "false" @default.
- W3009018976 magId "3009018976" @default.
- W3009018976 workType "article" @default.