Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009073399> ?p ?o ?g. }
- W3009073399 abstract "Resource optimization for small-cell wireless networks is more complicated than the traditional applications. The solution needs to be delivered promptly to respond the highly dynamic temporal and spatial variations. It seems that the machine learning strategy is more flexible and adaptive than the conventional optimization methods, since ML has the potential to find the implicit function relationship between arbitrary input data and output results. In this work, we focus on a generic D2D network and to show the effectiveness of ML apply to solve the power optimization problem with different optimization models. The research spans over all stages such as analysis, design, implementation, and validation. It is shown that the ML method has achieved several benchmarks in terms of QoS metrics for different optimization models." @default.
- W3009073399 created "2020-03-13" @default.
- W3009073399 creator A5020051427 @default.
- W3009073399 creator A5028358992 @default.
- W3009073399 creator A5084512743 @default.
- W3009073399 date "2019-12-01" @default.
- W3009073399 modified "2023-10-18" @default.
- W3009073399 title "Machine Learning for Power Allocation of a D2D Network" @default.
- W3009073399 cites W2023472100 @default.
- W3009073399 cites W2147584524 @default.
- W3009073399 cites W2562947506 @default.
- W3009073399 cites W2616867685 @default.
- W3009073399 cites W2741401130 @default.
- W3009073399 cites W2797462110 @default.
- W3009073399 cites W2803132538 @default.
- W3009073399 cites W2883094398 @default.
- W3009073399 cites W2942064388 @default.
- W3009073399 cites W2964021722 @default.
- W3009073399 cites W2992716901 @default.
- W3009073399 cites W3146803896 @default.
- W3009073399 cites W1970830346 @default.
- W3009073399 doi "https://doi.org/10.1109/globecom38437.2019.9013762" @default.
- W3009073399 hasPublicationYear "2019" @default.
- W3009073399 type Work @default.
- W3009073399 sameAs 3009073399 @default.
- W3009073399 citedByCount "2" @default.
- W3009073399 countsByYear W30090733992020 @default.
- W3009073399 countsByYear W30090733992021 @default.
- W3009073399 crossrefType "proceedings-article" @default.
- W3009073399 hasAuthorship W3009073399A5020051427 @default.
- W3009073399 hasAuthorship W3009073399A5028358992 @default.
- W3009073399 hasAuthorship W3009073399A5084512743 @default.
- W3009073399 hasConcept C108037233 @default.
- W3009073399 hasConcept C111919701 @default.
- W3009073399 hasConcept C11413529 @default.
- W3009073399 hasConcept C119857082 @default.
- W3009073399 hasConcept C120314980 @default.
- W3009073399 hasConcept C120665830 @default.
- W3009073399 hasConcept C121332964 @default.
- W3009073399 hasConcept C126255220 @default.
- W3009073399 hasConcept C137836250 @default.
- W3009073399 hasConcept C14036430 @default.
- W3009073399 hasConcept C149672232 @default.
- W3009073399 hasConcept C154945302 @default.
- W3009073399 hasConcept C163258240 @default.
- W3009073399 hasConcept C168292644 @default.
- W3009073399 hasConcept C192209626 @default.
- W3009073399 hasConcept C206345919 @default.
- W3009073399 hasConcept C2780609101 @default.
- W3009073399 hasConcept C29202148 @default.
- W3009073399 hasConcept C2984118289 @default.
- W3009073399 hasConcept C31258907 @default.
- W3009073399 hasConcept C33923547 @default.
- W3009073399 hasConcept C41008148 @default.
- W3009073399 hasConcept C5119721 @default.
- W3009073399 hasConcept C555944384 @default.
- W3009073399 hasConcept C62520636 @default.
- W3009073399 hasConcept C76155785 @default.
- W3009073399 hasConcept C78458016 @default.
- W3009073399 hasConcept C86803240 @default.
- W3009073399 hasConceptScore W3009073399C108037233 @default.
- W3009073399 hasConceptScore W3009073399C111919701 @default.
- W3009073399 hasConceptScore W3009073399C11413529 @default.
- W3009073399 hasConceptScore W3009073399C119857082 @default.
- W3009073399 hasConceptScore W3009073399C120314980 @default.
- W3009073399 hasConceptScore W3009073399C120665830 @default.
- W3009073399 hasConceptScore W3009073399C121332964 @default.
- W3009073399 hasConceptScore W3009073399C126255220 @default.
- W3009073399 hasConceptScore W3009073399C137836250 @default.
- W3009073399 hasConceptScore W3009073399C14036430 @default.
- W3009073399 hasConceptScore W3009073399C149672232 @default.
- W3009073399 hasConceptScore W3009073399C154945302 @default.
- W3009073399 hasConceptScore W3009073399C163258240 @default.
- W3009073399 hasConceptScore W3009073399C168292644 @default.
- W3009073399 hasConceptScore W3009073399C192209626 @default.
- W3009073399 hasConceptScore W3009073399C206345919 @default.
- W3009073399 hasConceptScore W3009073399C2780609101 @default.
- W3009073399 hasConceptScore W3009073399C29202148 @default.
- W3009073399 hasConceptScore W3009073399C2984118289 @default.
- W3009073399 hasConceptScore W3009073399C31258907 @default.
- W3009073399 hasConceptScore W3009073399C33923547 @default.
- W3009073399 hasConceptScore W3009073399C41008148 @default.
- W3009073399 hasConceptScore W3009073399C5119721 @default.
- W3009073399 hasConceptScore W3009073399C555944384 @default.
- W3009073399 hasConceptScore W3009073399C62520636 @default.
- W3009073399 hasConceptScore W3009073399C76155785 @default.
- W3009073399 hasConceptScore W3009073399C78458016 @default.
- W3009073399 hasConceptScore W3009073399C86803240 @default.
- W3009073399 hasLocation W30090733991 @default.
- W3009073399 hasOpenAccess W3009073399 @default.
- W3009073399 hasPrimaryLocation W30090733991 @default.
- W3009073399 hasRelatedWork W10360419 @default.
- W3009073399 hasRelatedWork W10959838 @default.
- W3009073399 hasRelatedWork W11899514 @default.
- W3009073399 hasRelatedWork W11917992 @default.
- W3009073399 hasRelatedWork W1316385 @default.
- W3009073399 hasRelatedWork W13405455 @default.
- W3009073399 hasRelatedWork W3289361 @default.
- W3009073399 hasRelatedWork W4650715 @default.
- W3009073399 hasRelatedWork W6162201 @default.