Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009104906> ?p ?o ?g. }
- W3009104906 abstract "Although artificial neural networks have recently been proven to provide a promising new framework for constructing quantum many-body wave functions, the parametrization of a quantum wave function with non-abelian symmetries in terms of a Boltzmann machine inherently leads to biased results due to the basis dependence. We demonstrate that this problem can be overcome by sampling in the basis of irreducible representations instead of spins, for which the corresponding ansatz respects the non-abelian symmetries of the system. We apply our methodology to find the ground states of the one-dimensional antiferromagnetic Heisenberg (AFH) model with spin-1/2 and spin-1 degrees of freedom, and obtain a substantially higher accuracy than when using the s_{z} basis as an input to the neural network. The proposed ansatz can target excited states, which is illustrated by calculating the energy gap of the AFH model. We also generalize the framework to the case of anyonic spin chains." @default.
- W3009104906 created "2020-03-13" @default.
- W3009104906 creator A5001154267 @default.
- W3009104906 creator A5023227620 @default.
- W3009104906 creator A5023283182 @default.
- W3009104906 creator A5029555436 @default.
- W3009104906 creator A5039554817 @default.
- W3009104906 creator A5074377723 @default.
- W3009104906 creator A5077907689 @default.
- W3009104906 date "2020-03-02" @default.
- W3009104906 modified "2023-10-06" @default.
- W3009104906 title "Restricted Boltzmann Machines for Quantum States with Non-Abelian or Anyonic Symmetries" @default.
- W3009104906 cites W2013145865 @default.
- W3009104906 cites W2034042302 @default.
- W3009104906 cites W2037812500 @default.
- W3009104906 cites W2057042903 @default.
- W3009104906 cites W2079488937 @default.
- W3009104906 cites W2135273380 @default.
- W3009104906 cites W2152240519 @default.
- W3009104906 cites W2337082154 @default.
- W3009104906 cites W2418689459 @default.
- W3009104906 cites W2419175238 @default.
- W3009104906 cites W2479153330 @default.
- W3009104906 cites W2530117613 @default.
- W3009104906 cites W2530819665 @default.
- W3009104906 cites W2531147647 @default.
- W3009104906 cites W2557778781 @default.
- W3009104906 cites W2582157661 @default.
- W3009104906 cites W2582761306 @default.
- W3009104906 cites W2592477384 @default.
- W3009104906 cites W2607839392 @default.
- W3009104906 cites W2750673150 @default.
- W3009104906 cites W2755190613 @default.
- W3009104906 cites W2765597272 @default.
- W3009104906 cites W2766323574 @default.
- W3009104906 cites W2769287225 @default.
- W3009104906 cites W2784444004 @default.
- W3009104906 cites W2785331752 @default.
- W3009104906 cites W2799261665 @default.
- W3009104906 cites W2819059150 @default.
- W3009104906 cites W2845055700 @default.
- W3009104906 cites W2883954259 @default.
- W3009104906 cites W2889345494 @default.
- W3009104906 cites W2905527813 @default.
- W3009104906 cites W2912386441 @default.
- W3009104906 cites W2914465168 @default.
- W3009104906 cites W2916052864 @default.
- W3009104906 cites W2916528205 @default.
- W3009104906 cites W2921586812 @default.
- W3009104906 cites W2923537029 @default.
- W3009104906 cites W2953495237 @default.
- W3009104906 cites W2954332695 @default.
- W3009104906 cites W3098834448 @default.
- W3009104906 cites W3101214870 @default.
- W3009104906 cites W3101772659 @default.
- W3009104906 cites W3103546924 @default.
- W3009104906 cites W3104239185 @default.
- W3009104906 cites W3104496372 @default.
- W3009104906 cites W4241316527 @default.
- W3009104906 cites W4250463753 @default.
- W3009104906 doi "https://doi.org/10.1103/physrevlett.124.097201" @default.
- W3009104906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32202867" @default.
- W3009104906 hasPublicationYear "2020" @default.
- W3009104906 type Work @default.
- W3009104906 sameAs 3009104906 @default.
- W3009104906 citedByCount "57" @default.
- W3009104906 countsByYear W30091049062019 @default.
- W3009104906 countsByYear W30091049062020 @default.
- W3009104906 countsByYear W30091049062021 @default.
- W3009104906 countsByYear W30091049062022 @default.
- W3009104906 countsByYear W30091049062023 @default.
- W3009104906 crossrefType "journal-article" @default.
- W3009104906 hasAuthorship W3009104906A5001154267 @default.
- W3009104906 hasAuthorship W3009104906A5023227620 @default.
- W3009104906 hasAuthorship W3009104906A5023283182 @default.
- W3009104906 hasAuthorship W3009104906A5029555436 @default.
- W3009104906 hasAuthorship W3009104906A5039554817 @default.
- W3009104906 hasAuthorship W3009104906A5074377723 @default.
- W3009104906 hasAuthorship W3009104906A5077907689 @default.
- W3009104906 hasBestOaLocation W30091049062 @default.
- W3009104906 hasConcept C113603373 @default.
- W3009104906 hasConcept C121332964 @default.
- W3009104906 hasConcept C121864883 @default.
- W3009104906 hasConcept C12426560 @default.
- W3009104906 hasConcept C130979935 @default.
- W3009104906 hasConcept C136170076 @default.
- W3009104906 hasConcept C154945302 @default.
- W3009104906 hasConcept C174038435 @default.
- W3009104906 hasConcept C192576344 @default.
- W3009104906 hasConcept C202444582 @default.
- W3009104906 hasConcept C2524010 @default.
- W3009104906 hasConcept C26873012 @default.
- W3009104906 hasConcept C2778870898 @default.
- W3009104906 hasConcept C33332235 @default.
- W3009104906 hasConcept C33923547 @default.
- W3009104906 hasConcept C41008148 @default.
- W3009104906 hasConcept C42704618 @default.
- W3009104906 hasConcept C50644808 @default.
- W3009104906 hasConcept C5917680 @default.
- W3009104906 hasConcept C62520636 @default.