Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009137734> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3009137734 abstract "The paper is about sentiment analysis research on Twitter. In this research data with the keyword, ‘Russian Hacking’ concerning the 2016 US presidential election on Twitter was taken as a dataset using Twitter API with Python pro-gramming language. The first process in sentiment analysis is the cleaning phase of tweet data, then using the Lexicon-based method to produce positive, negative, and neutral sentiment values for each tweet. Data that has been cleaned and classified will be processed in the Deep learning method with Long Short-Term Memory (LSTM) algorithm and Machine learning method with Multinomial Logistic Regression (MLR) algorithm. The accuracy of these two classification methods are calculated using the confusion-matrix method. The accuracy obtained from the LSTM classification method is 93 % and the MLR classification method is 92 %. Thus, it can be concluded that LSTM is better in classifying sentiments compared to MLR." @default.
- W3009137734 created "2020-03-13" @default.
- W3009137734 creator A5002474028 @default.
- W3009137734 creator A5013602968 @default.
- W3009137734 creator A5015479196 @default.
- W3009137734 creator A5031604901 @default.
- W3009137734 creator A5078379119 @default.
- W3009137734 date "2020-01-01" @default.
- W3009137734 modified "2023-09-26" @default.
- W3009137734 title "Comparison of Accuracy between Long Short-Term Memory-Deep Learning and Multinomial Logistic Regression-Machine Learning in Sentiment Analysis on Twitter" @default.
- W3009137734 cites W1771459135 @default.
- W3009137734 cites W1884859883 @default.
- W3009137734 cites W1924770834 @default.
- W3009137734 cites W1973948212 @default.
- W3009137734 cites W2064675550 @default.
- W3009137734 cites W2100649405 @default.
- W3009137734 cites W2121029939 @default.
- W3009137734 cites W2250557235 @default.
- W3009137734 cites W2491741440 @default.
- W3009137734 cites W2928929598 @default.
- W3009137734 cites W3152231500 @default.
- W3009137734 cites W592244745 @default.
- W3009137734 doi "https://doi.org/10.14569/ijacsa.2020.0110294" @default.
- W3009137734 hasPublicationYear "2020" @default.
- W3009137734 type Work @default.
- W3009137734 sameAs 3009137734 @default.
- W3009137734 citedByCount "1" @default.
- W3009137734 countsByYear W30091377342022 @default.
- W3009137734 crossrefType "journal-article" @default.
- W3009137734 hasAuthorship W3009137734A5002474028 @default.
- W3009137734 hasAuthorship W3009137734A5013602968 @default.
- W3009137734 hasAuthorship W3009137734A5015479196 @default.
- W3009137734 hasAuthorship W3009137734A5031604901 @default.
- W3009137734 hasAuthorship W3009137734A5078379119 @default.
- W3009137734 hasBestOaLocation W30091377341 @default.
- W3009137734 hasConcept C111919701 @default.
- W3009137734 hasConcept C117568660 @default.
- W3009137734 hasConcept C119857082 @default.
- W3009137734 hasConcept C121332964 @default.
- W3009137734 hasConcept C154945302 @default.
- W3009137734 hasConcept C169258074 @default.
- W3009137734 hasConcept C204321447 @default.
- W3009137734 hasConcept C2778121359 @default.
- W3009137734 hasConcept C41008148 @default.
- W3009137734 hasConcept C519991488 @default.
- W3009137734 hasConcept C61797465 @default.
- W3009137734 hasConcept C62520636 @default.
- W3009137734 hasConcept C66402592 @default.
- W3009137734 hasConceptScore W3009137734C111919701 @default.
- W3009137734 hasConceptScore W3009137734C117568660 @default.
- W3009137734 hasConceptScore W3009137734C119857082 @default.
- W3009137734 hasConceptScore W3009137734C121332964 @default.
- W3009137734 hasConceptScore W3009137734C154945302 @default.
- W3009137734 hasConceptScore W3009137734C169258074 @default.
- W3009137734 hasConceptScore W3009137734C204321447 @default.
- W3009137734 hasConceptScore W3009137734C2778121359 @default.
- W3009137734 hasConceptScore W3009137734C41008148 @default.
- W3009137734 hasConceptScore W3009137734C519991488 @default.
- W3009137734 hasConceptScore W3009137734C61797465 @default.
- W3009137734 hasConceptScore W3009137734C62520636 @default.
- W3009137734 hasConceptScore W3009137734C66402592 @default.
- W3009137734 hasIssue "2" @default.
- W3009137734 hasLocation W30091377341 @default.
- W3009137734 hasOpenAccess W3009137734 @default.
- W3009137734 hasPrimaryLocation W30091377341 @default.
- W3009137734 hasRelatedWork W2965885965 @default.
- W3009137734 hasRelatedWork W3011677438 @default.
- W3009137734 hasRelatedWork W3107602296 @default.
- W3009137734 hasRelatedWork W4205555581 @default.
- W3009137734 hasRelatedWork W4285815787 @default.
- W3009137734 hasRelatedWork W4288767723 @default.
- W3009137734 hasRelatedWork W4312922676 @default.
- W3009137734 hasRelatedWork W4312949351 @default.
- W3009137734 hasRelatedWork W4327531511 @default.
- W3009137734 hasRelatedWork W4327831767 @default.
- W3009137734 hasVolume "11" @default.
- W3009137734 isParatext "false" @default.
- W3009137734 isRetracted "false" @default.
- W3009137734 magId "3009137734" @default.
- W3009137734 workType "article" @default.