Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009165395> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3009165395 abstract "Outlier detection searches for unusual, rare observations in large, often high-dimensional data sets.One of the fundamental challenges of outlier detection is that ``unusual'' typically depends on the perception of a user, the recipient of the detection result.This makes finding a formal definition of ``unusual'' that matches with user expectations difficult.One way to deal with this issue is active learning, i.e., methods that ask users to provide auxiliary information, such as class label annotations, to return algorithmic results that are more in line with the user input.Active learning is well-suited for outlier detection, and many respective methods have been proposed over the last years.However, existing methods build upon strong assumptions.One example is the assumption that users can always provide accurate feedback, regardless of how algorithmic results are presented to them -- an assumption which is unlikely to hold when data is high-dimensional.It is an open question to which extent existing assumptions are in the way of realizing active learning in practice.In this thesis, we study this question from different perspectives with a differentiated, user-centric view on active learning.In the beginning, we structure and unify the research area on active learning for outlier detection.Specifically, we present a rigorous specification of the learning setup, structure the basic building blocks, and propose novel evaluation standards.Throughout our work, this structure has turned out to be essential to select a suitable active learning method, and to assess novel contributions in this field.We then present two algorithmic contributions to make active learning for outlier detection user-centric.First, we bring together two research areas that have been looked at independently so far: outlier detection in subspaces and active learning.Subspace outlier detection are methods to improve outlier detection quality in high-dimensional data, and to make detection results more easy to interpret.Our approach combines them with active learning such that one can balance between detection quality and annotation effort.Second, we address one of the fundamental difficulties with adapting active learning to specific applications: selecting good hyperparameter values.Existing methods to estimate hyperparameter values are heuristics, and it is unclear in which settings they work well.In this thesis, we therefore propose the first principled method to estimate hyperparameter values.Our approach relies on active learning to estimate hyperparameter values, and returns a quality estimate of the values selected.In the last part of the thesis, we look at validating active learning for outlier detection practically.There, we have identified several technical and conceptual challenges which we have experienced firsthand in our research.We structure and document them, and finally derive a roadmap towards validating active learning for outlier detection with user studies." @default.
- W3009165395 created "2020-03-13" @default.
- W3009165395 creator A5032207241 @default.
- W3009165395 date "2020-01-01" @default.
- W3009165395 modified "2023-09-23" @default.
- W3009165395 title "User-Centric Active Learning for Outlier Detection" @default.
- W3009165395 doi "https://doi.org/10.5445/ir/1000117443" @default.
- W3009165395 hasPublicationYear "2020" @default.
- W3009165395 type Work @default.
- W3009165395 sameAs 3009165395 @default.
- W3009165395 citedByCount "0" @default.
- W3009165395 crossrefType "journal-article" @default.
- W3009165395 hasAuthorship W3009165395A5032207241 @default.
- W3009165395 hasConcept C119857082 @default.
- W3009165395 hasConcept C124101348 @default.
- W3009165395 hasConcept C136264566 @default.
- W3009165395 hasConcept C154945302 @default.
- W3009165395 hasConcept C162324750 @default.
- W3009165395 hasConcept C202444582 @default.
- W3009165395 hasConcept C2777212361 @default.
- W3009165395 hasConcept C33923547 @default.
- W3009165395 hasConcept C41008148 @default.
- W3009165395 hasConcept C739882 @default.
- W3009165395 hasConcept C77967617 @default.
- W3009165395 hasConcept C79337645 @default.
- W3009165395 hasConcept C90329073 @default.
- W3009165395 hasConcept C9652623 @default.
- W3009165395 hasConceptScore W3009165395C119857082 @default.
- W3009165395 hasConceptScore W3009165395C124101348 @default.
- W3009165395 hasConceptScore W3009165395C136264566 @default.
- W3009165395 hasConceptScore W3009165395C154945302 @default.
- W3009165395 hasConceptScore W3009165395C162324750 @default.
- W3009165395 hasConceptScore W3009165395C202444582 @default.
- W3009165395 hasConceptScore W3009165395C2777212361 @default.
- W3009165395 hasConceptScore W3009165395C33923547 @default.
- W3009165395 hasConceptScore W3009165395C41008148 @default.
- W3009165395 hasConceptScore W3009165395C739882 @default.
- W3009165395 hasConceptScore W3009165395C77967617 @default.
- W3009165395 hasConceptScore W3009165395C79337645 @default.
- W3009165395 hasConceptScore W3009165395C90329073 @default.
- W3009165395 hasConceptScore W3009165395C9652623 @default.
- W3009165395 hasLocation W30091653951 @default.
- W3009165395 hasOpenAccess W3009165395 @default.
- W3009165395 hasPrimaryLocation W30091653951 @default.
- W3009165395 hasRelatedWork W2187130308 @default.
- W3009165395 hasRelatedWork W2325684928 @default.
- W3009165395 hasRelatedWork W2346277511 @default.
- W3009165395 hasRelatedWork W2887561352 @default.
- W3009165395 hasRelatedWork W2905382854 @default.
- W3009165395 hasRelatedWork W2908944636 @default.
- W3009165395 hasRelatedWork W2911399349 @default.
- W3009165395 hasRelatedWork W2947197489 @default.
- W3009165395 hasRelatedWork W2951306931 @default.
- W3009165395 hasRelatedWork W2985199938 @default.
- W3009165395 hasRelatedWork W3001821705 @default.
- W3009165395 hasRelatedWork W3018469696 @default.
- W3009165395 hasRelatedWork W3021728680 @default.
- W3009165395 hasRelatedWork W3126320871 @default.
- W3009165395 hasRelatedWork W3128747898 @default.
- W3009165395 hasRelatedWork W3152602106 @default.
- W3009165395 hasRelatedWork W3175341743 @default.
- W3009165395 hasRelatedWork W3202144687 @default.
- W3009165395 hasRelatedWork W3205180534 @default.
- W3009165395 hasRelatedWork W3205509098 @default.
- W3009165395 isParatext "false" @default.
- W3009165395 isRetracted "false" @default.
- W3009165395 magId "3009165395" @default.
- W3009165395 workType "article" @default.