Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009188839> ?p ?o ?g. }
- W3009188839 endingPage "1759" @default.
- W3009188839 startingPage "1759" @default.
- W3009188839 abstract "Unmanned Aerial Vehicle (UAV) spray has been used for efficient and adaptive pesticide applications with its low costs. However, droplet drift is the main problem for UAV spray and will induce pesticide waste and safety concerns. Droplet size and deposition distribution are both highly related to droplet drift and spray effect, which are determined by the nozzle. Therefore, it is necessary to propose an evaluating method for a specific UAV spray nozzles. In this paper, four machine learning methods (REGRESS, least squares support vector machines (LS-SVM), extreme learning machine, and radial basis function neural network (RBFNN)) were applied for quantitatively evaluating one type of UAV spray nozzle (TEEJET XR110015VS), and the case of twin nozzles was investigated. The results showed REGRESS and LS-SVM are good candidates for droplet size evaluation with the coefficient of determination in the calibration set above 0.9 and root means square errors of the prediction set around 2 µm. RBFNN achieved the best performance for the evaluation of deposition distribution and showed its potential for determining the droplet size of overlapping area. Overall, this study proved the accuracy and efficiency of using the machine learning method for UAV spray nozzle evaluation. Additionally, the study demonstrated the feasibility of using machine learning model to predict the droplet size in the overlapping area of twin nozzles." @default.
- W3009188839 created "2020-03-13" @default.
- W3009188839 creator A5016628945 @default.
- W3009188839 creator A5026394330 @default.
- W3009188839 creator A5031475260 @default.
- W3009188839 creator A5043941427 @default.
- W3009188839 creator A5060415756 @default.
- W3009188839 creator A5075729645 @default.
- W3009188839 date "2020-03-04" @default.
- W3009188839 modified "2023-09-26" @default.
- W3009188839 title "Application of Machine Learning Method to Quantitatively Evaluate the Droplet Size and Deposition Distribution of the UAV Spray Nozzle" @default.
- W3009188839 cites W1969268717 @default.
- W3009188839 cites W1977344393 @default.
- W3009188839 cites W1977994906 @default.
- W3009188839 cites W1978996791 @default.
- W3009188839 cites W1979086491 @default.
- W3009188839 cites W1998105450 @default.
- W3009188839 cites W2002728347 @default.
- W3009188839 cites W2004159986 @default.
- W3009188839 cites W2010752539 @default.
- W3009188839 cites W2013936493 @default.
- W3009188839 cites W2014200941 @default.
- W3009188839 cites W2014628517 @default.
- W3009188839 cites W2015219393 @default.
- W3009188839 cites W2028701441 @default.
- W3009188839 cites W2031128345 @default.
- W3009188839 cites W2040604977 @default.
- W3009188839 cites W2054768178 @default.
- W3009188839 cites W2066940478 @default.
- W3009188839 cites W2067542501 @default.
- W3009188839 cites W2082096904 @default.
- W3009188839 cites W2086096184 @default.
- W3009188839 cites W2111072639 @default.
- W3009188839 cites W2123162799 @default.
- W3009188839 cites W2153637954 @default.
- W3009188839 cites W2158247472 @default.
- W3009188839 cites W2160773984 @default.
- W3009188839 cites W2306843791 @default.
- W3009188839 cites W2586259521 @default.
- W3009188839 cites W2770344288 @default.
- W3009188839 cites W2772865178 @default.
- W3009188839 cites W2781684738 @default.
- W3009188839 cites W2783887080 @default.
- W3009188839 cites W2810473382 @default.
- W3009188839 cites W2889570133 @default.
- W3009188839 cites W2889970548 @default.
- W3009188839 cites W2962765391 @default.
- W3009188839 cites W3099487920 @default.
- W3009188839 cites W4244405588 @default.
- W3009188839 cites W4255923120 @default.
- W3009188839 cites W596236362 @default.
- W3009188839 doi "https://doi.org/10.3390/app10051759" @default.
- W3009188839 hasPublicationYear "2020" @default.
- W3009188839 type Work @default.
- W3009188839 sameAs 3009188839 @default.
- W3009188839 citedByCount "7" @default.
- W3009188839 countsByYear W30091888392021 @default.
- W3009188839 countsByYear W30091888392022 @default.
- W3009188839 countsByYear W30091888392023 @default.
- W3009188839 crossrefType "journal-article" @default.
- W3009188839 hasAuthorship W3009188839A5016628945 @default.
- W3009188839 hasAuthorship W3009188839A5026394330 @default.
- W3009188839 hasAuthorship W3009188839A5031475260 @default.
- W3009188839 hasAuthorship W3009188839A5043941427 @default.
- W3009188839 hasAuthorship W3009188839A5060415756 @default.
- W3009188839 hasAuthorship W3009188839A5075729645 @default.
- W3009188839 hasBestOaLocation W30091888391 @default.
- W3009188839 hasConcept C105795698 @default.
- W3009188839 hasConcept C116705413 @default.
- W3009188839 hasConcept C119857082 @default.
- W3009188839 hasConcept C12267149 @default.
- W3009188839 hasConcept C127313418 @default.
- W3009188839 hasConcept C127413603 @default.
- W3009188839 hasConcept C151730666 @default.
- W3009188839 hasConcept C154945302 @default.
- W3009188839 hasConcept C165838908 @default.
- W3009188839 hasConcept C190894226 @default.
- W3009188839 hasConcept C2816523 @default.
- W3009188839 hasConcept C33923547 @default.
- W3009188839 hasConcept C41008148 @default.
- W3009188839 hasConcept C44154836 @default.
- W3009188839 hasConcept C56200935 @default.
- W3009188839 hasConcept C64297162 @default.
- W3009188839 hasConcept C78519656 @default.
- W3009188839 hasConceptScore W3009188839C105795698 @default.
- W3009188839 hasConceptScore W3009188839C116705413 @default.
- W3009188839 hasConceptScore W3009188839C119857082 @default.
- W3009188839 hasConceptScore W3009188839C12267149 @default.
- W3009188839 hasConceptScore W3009188839C127313418 @default.
- W3009188839 hasConceptScore W3009188839C127413603 @default.
- W3009188839 hasConceptScore W3009188839C151730666 @default.
- W3009188839 hasConceptScore W3009188839C154945302 @default.
- W3009188839 hasConceptScore W3009188839C165838908 @default.
- W3009188839 hasConceptScore W3009188839C190894226 @default.
- W3009188839 hasConceptScore W3009188839C2816523 @default.
- W3009188839 hasConceptScore W3009188839C33923547 @default.
- W3009188839 hasConceptScore W3009188839C41008148 @default.
- W3009188839 hasConceptScore W3009188839C44154836 @default.