Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009295847> ?p ?o ?g. }
- W3009295847 endingPage "e0220925" @default.
- W3009295847 startingPage "e0220925" @default.
- W3009295847 abstract "Much effort has been invested in the identification of protein-protein interactions using text mining and machine learning methods. The extraction of functional relationships between chemical compounds and proteins from literature has received much less attention, and no ready-to-use open-source software is so far available for this task.We created a new benchmark dataset of 2,613 sentences from abstracts containing annotations of proteins, small molecules, and their relationships. Two kernel methods were applied to classify these relationships as functional or non-functional, named shallow linguistic and all-paths graph kernel. Furthermore, the benefit of interaction verbs in sentences was evaluated.The cross-validation of the all-paths graph kernel (AUC value: 84.6%, F1 score: 79.0%) shows slightly better results than the shallow linguistic kernel (AUC value: 82.5%, F1 score: 77.2%) on our benchmark dataset. Both models achieve state-of-the-art performance in the research area of relation extraction. Furthermore, the combination of shallow linguistic and all-paths graph kernel could further increase the overall performance slightly. We used each of the two kernels to identify functional relationships in all PubMed abstracts (29 million) and provide the results, including recorded processing time.The software for the tested kernels, the benchmark, the processed 29 million PubMed abstracts, all evaluation scripts, as well as the scripts for processing the complete PubMed database are freely available at https://github.com/KerstenDoering/CPI-Pipeline." @default.
- W3009295847 created "2020-03-13" @default.
- W3009295847 creator A5010380284 @default.
- W3009295847 creator A5012768134 @default.
- W3009295847 creator A5016519042 @default.
- W3009295847 creator A5018736728 @default.
- W3009295847 creator A5023174530 @default.
- W3009295847 creator A5025893671 @default.
- W3009295847 creator A5032467985 @default.
- W3009295847 creator A5035997423 @default.
- W3009295847 creator A5049231945 @default.
- W3009295847 creator A5055770410 @default.
- W3009295847 creator A5069806228 @default.
- W3009295847 creator A5080923680 @default.
- W3009295847 date "2020-03-03" @default.
- W3009295847 modified "2023-10-17" @default.
- W3009295847 title "Automated recognition of functional compound-protein relationships in literature" @default.
- W3009295847 cites W1816257748 @default.
- W3009295847 cites W1964670939 @default.
- W3009295847 cites W1973352244 @default.
- W3009295847 cites W1993046136 @default.
- W3009295847 cites W1994306321 @default.
- W3009295847 cites W2048059249 @default.
- W3009295847 cites W2076632311 @default.
- W3009295847 cites W2098992721 @default.
- W3009295847 cites W2108010925 @default.
- W3009295847 cites W2108069034 @default.
- W3009295847 cites W2121244856 @default.
- W3009295847 cites W2123579157 @default.
- W3009295847 cites W2126122334 @default.
- W3009295847 cites W2127014487 @default.
- W3009295847 cites W2142741334 @default.
- W3009295847 cites W2152495216 @default.
- W3009295847 cites W2153635508 @default.
- W3009295847 cites W2156930958 @default.
- W3009295847 cites W2166111585 @default.
- W3009295847 cites W2167269995 @default.
- W3009295847 cites W2294516783 @default.
- W3009295847 cites W2314573139 @default.
- W3009295847 cites W2537623931 @default.
- W3009295847 cites W2557315899 @default.
- W3009295847 cites W2558999090 @default.
- W3009295847 cites W2767891136 @default.
- W3009295847 cites W2795129839 @default.
- W3009295847 cites W2809349863 @default.
- W3009295847 cites W2883380892 @default.
- W3009295847 cites W2883749461 @default.
- W3009295847 cites W2896378533 @default.
- W3009295847 cites W2899070097 @default.
- W3009295847 cites W2914171828 @default.
- W3009295847 cites W2983475513 @default.
- W3009295847 cites W4210702584 @default.
- W3009295847 doi "https://doi.org/10.1371/journal.pone.0220925" @default.
- W3009295847 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7053725" @default.
- W3009295847 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32126064" @default.
- W3009295847 hasPublicationYear "2020" @default.
- W3009295847 type Work @default.
- W3009295847 sameAs 3009295847 @default.
- W3009295847 citedByCount "2" @default.
- W3009295847 countsByYear W30092958472022 @default.
- W3009295847 countsByYear W30092958472023 @default.
- W3009295847 crossrefType "journal-article" @default.
- W3009295847 hasAuthorship W3009295847A5010380284 @default.
- W3009295847 hasAuthorship W3009295847A5012768134 @default.
- W3009295847 hasAuthorship W3009295847A5016519042 @default.
- W3009295847 hasAuthorship W3009295847A5018736728 @default.
- W3009295847 hasAuthorship W3009295847A5023174530 @default.
- W3009295847 hasAuthorship W3009295847A5025893671 @default.
- W3009295847 hasAuthorship W3009295847A5032467985 @default.
- W3009295847 hasAuthorship W3009295847A5035997423 @default.
- W3009295847 hasAuthorship W3009295847A5049231945 @default.
- W3009295847 hasAuthorship W3009295847A5055770410 @default.
- W3009295847 hasAuthorship W3009295847A5069806228 @default.
- W3009295847 hasAuthorship W3009295847A5080923680 @default.
- W3009295847 hasBestOaLocation W30092958471 @default.
- W3009295847 hasConcept C114614502 @default.
- W3009295847 hasConcept C119857082 @default.
- W3009295847 hasConcept C124101348 @default.
- W3009295847 hasConcept C132525143 @default.
- W3009295847 hasConcept C13280743 @default.
- W3009295847 hasConcept C153604712 @default.
- W3009295847 hasConcept C154945302 @default.
- W3009295847 hasConcept C185798385 @default.
- W3009295847 hasConcept C195807954 @default.
- W3009295847 hasConcept C199360897 @default.
- W3009295847 hasConcept C204321447 @default.
- W3009295847 hasConcept C205649164 @default.
- W3009295847 hasConcept C2777904410 @default.
- W3009295847 hasConcept C33923547 @default.
- W3009295847 hasConcept C41008148 @default.
- W3009295847 hasConcept C43521106 @default.
- W3009295847 hasConcept C61423126 @default.
- W3009295847 hasConcept C74193536 @default.
- W3009295847 hasConcept C80444323 @default.
- W3009295847 hasConceptScore W3009295847C114614502 @default.
- W3009295847 hasConceptScore W3009295847C119857082 @default.
- W3009295847 hasConceptScore W3009295847C124101348 @default.
- W3009295847 hasConceptScore W3009295847C132525143 @default.