Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009352062> ?p ?o ?g. }
- W3009352062 endingPage "6668" @default.
- W3009352062 startingPage "6645" @default.
- W3009352062 abstract "Abstract Feed-forward, fully connected artificial neural networks or the so-called multi-layer perceptrons are well-known universal approximators. However, their learning performance varies significantly depending on the function or the solution space that they attempt to approximate. This is mainly because of their homogenous configuration based solely on the linear neuron model. Therefore, while they learn very well those problems with a monotonous, relatively simple and linearly separable solution space, they may entirely fail to do so when the solution space is highly nonlinear and complex. Sharing the same linear neuron model with two additional constraints (local connections and weight sharing), this is also true for the conventional convolutional neural networks (CNNs) and it is, therefore, not surprising that in many challenging problems only the deep CNNs with a massive complexity and depth can achieve the required diversity and the learning performance. In order to address this drawback and also to accomplish a more generalized model over the convolutional neurons, this study proposes a novel network model, called operational neural networks (ONNs), which can be heterogeneous and encapsulate neurons with any set of operators to boost diversity and to learn highly complex and multi-modal functions or spaces with minimal network complexity and training data. Finally, the training method to back-propagate the error through the operational layers of ONNs is formulated. Experimental results over highly challenging problems demonstrate the superior learning capabilities of ONNs even with few neurons and hidden layers." @default.
- W3009352062 created "2020-03-13" @default.
- W3009352062 creator A5007583477 @default.
- W3009352062 creator A5047979812 @default.
- W3009352062 creator A5064535836 @default.
- W3009352062 creator A5090636507 @default.
- W3009352062 date "2020-03-06" @default.
- W3009352062 modified "2023-10-12" @default.
- W3009352062 title "Operational neural networks" @default.
- W3009352062 cites W1498436455 @default.
- W3009352062 cites W1578062088 @default.
- W3009352062 cites W1808966389 @default.
- W3009352062 cites W1861492603 @default.
- W3009352062 cites W1903029394 @default.
- W3009352062 cites W1915360731 @default.
- W3009352062 cites W2008027377 @default.
- W3009352062 cites W2009780792 @default.
- W3009352062 cites W2011377831 @default.
- W3009352062 cites W2015304908 @default.
- W3009352062 cites W2021150359 @default.
- W3009352062 cites W2059668389 @default.
- W3009352062 cites W2066792007 @default.
- W3009352062 cites W2084029682 @default.
- W3009352062 cites W2089029279 @default.
- W3009352062 cites W2126487187 @default.
- W3009352062 cites W2127045326 @default.
- W3009352062 cites W2155482699 @default.
- W3009352062 cites W2162693370 @default.
- W3009352062 cites W2508419234 @default.
- W3009352062 cites W2546712344 @default.
- W3009352062 cites W2555182955 @default.
- W3009352062 cites W2734444710 @default.
- W3009352062 cites W2766341514 @default.
- W3009352062 cites W2796495430 @default.
- W3009352062 cites W2962793481 @default.
- W3009352062 cites W2963073614 @default.
- W3009352062 cites W2964046397 @default.
- W3009352062 cites W2964081807 @default.
- W3009352062 cites W2970725229 @default.
- W3009352062 doi "https://doi.org/10.1007/s00521-020-04780-3" @default.
- W3009352062 hasPublicationYear "2020" @default.
- W3009352062 type Work @default.
- W3009352062 sameAs 3009352062 @default.
- W3009352062 citedByCount "55" @default.
- W3009352062 countsByYear W30093520622020 @default.
- W3009352062 countsByYear W30093520622021 @default.
- W3009352062 countsByYear W30093520622022 @default.
- W3009352062 countsByYear W30093520622023 @default.
- W3009352062 crossrefType "journal-article" @default.
- W3009352062 hasAuthorship W3009352062A5007583477 @default.
- W3009352062 hasAuthorship W3009352062A5047979812 @default.
- W3009352062 hasAuthorship W3009352062A5064535836 @default.
- W3009352062 hasAuthorship W3009352062A5090636507 @default.
- W3009352062 hasBestOaLocation W30093520621 @default.
- W3009352062 hasConcept C108583219 @default.
- W3009352062 hasConcept C111472728 @default.
- W3009352062 hasConcept C121332964 @default.
- W3009352062 hasConcept C138885662 @default.
- W3009352062 hasConcept C14036430 @default.
- W3009352062 hasConcept C154945302 @default.
- W3009352062 hasConcept C158622935 @default.
- W3009352062 hasConcept C177264268 @default.
- W3009352062 hasConcept C199360897 @default.
- W3009352062 hasConcept C2780586882 @default.
- W3009352062 hasConcept C38365724 @default.
- W3009352062 hasConcept C41008148 @default.
- W3009352062 hasConcept C50644808 @default.
- W3009352062 hasConcept C60908668 @default.
- W3009352062 hasConcept C62520636 @default.
- W3009352062 hasConcept C78458016 @default.
- W3009352062 hasConcept C81363708 @default.
- W3009352062 hasConcept C86803240 @default.
- W3009352062 hasConceptScore W3009352062C108583219 @default.
- W3009352062 hasConceptScore W3009352062C111472728 @default.
- W3009352062 hasConceptScore W3009352062C121332964 @default.
- W3009352062 hasConceptScore W3009352062C138885662 @default.
- W3009352062 hasConceptScore W3009352062C14036430 @default.
- W3009352062 hasConceptScore W3009352062C154945302 @default.
- W3009352062 hasConceptScore W3009352062C158622935 @default.
- W3009352062 hasConceptScore W3009352062C177264268 @default.
- W3009352062 hasConceptScore W3009352062C199360897 @default.
- W3009352062 hasConceptScore W3009352062C2780586882 @default.
- W3009352062 hasConceptScore W3009352062C38365724 @default.
- W3009352062 hasConceptScore W3009352062C41008148 @default.
- W3009352062 hasConceptScore W3009352062C50644808 @default.
- W3009352062 hasConceptScore W3009352062C60908668 @default.
- W3009352062 hasConceptScore W3009352062C62520636 @default.
- W3009352062 hasConceptScore W3009352062C78458016 @default.
- W3009352062 hasConceptScore W3009352062C81363708 @default.
- W3009352062 hasConceptScore W3009352062C86803240 @default.
- W3009352062 hasIssue "11" @default.
- W3009352062 hasLocation W30093520621 @default.
- W3009352062 hasLocation W30093520622 @default.
- W3009352062 hasLocation W30093520623 @default.
- W3009352062 hasLocation W30093520624 @default.
- W3009352062 hasOpenAccess W3009352062 @default.
- W3009352062 hasPrimaryLocation W30093520621 @default.
- W3009352062 hasRelatedWork W1525510058 @default.