Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009387906> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W3009387906 abstract "Turbulent rotating convection is an important dynamical process occurring on nearly all planetary and stellar bodies, influencing many observed features such as magnetic fields, atmospheric jets and emitted heat flux patterns. For decades, it has been thought that the importance of rotation's influence on convection depends on the competition between the two relevant forces in the system: buoyancy (non-rotating) and Coriolis (rotating). The force balance argument does not, however, accurately predict the transition from rotationally controlled to non-rotating heat transfer behaviour. New results from laboratory and numerical experiments suggest that the transition is in fact controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. Turbulent rotating convection controls many observed features in stars and planets, such as magnetic fields. It has been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force. This paper presents results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. Turbulent rotating convection controls many observed features of stars and planets, such as magnetic fields, atmospheric jets and emitted heat flux patterns1,2,3,4,5,6. It has long been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force7,8,9,10,11,12. Here, however, we present results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers. We formulate a predictive description of the transition between the two regimes on the basis of the competition between these two boundary layers. This transition scaling theory unifies the disparate results of an extensive array of previous experiments8,9,10,11,12,13,14,15, and is broadly applicable to natural convection systems." @default.
- W3009387906 created "2020-03-13" @default.
- W3009387906 creator A5001044436 @default.
- W3009387906 creator A5011299807 @default.
- W3009387906 creator A5025479795 @default.
- W3009387906 creator A5041389413 @default.
- W3009387906 creator A5079398219 @default.
- W3009387906 date "2008-12-01" @default.
- W3009387906 modified "2023-09-23" @default.
- W3009387906 title "Boundary Layer Control of Rotating Convection Systems" @default.
- W3009387906 hasPublicationYear "2008" @default.
- W3009387906 type Work @default.
- W3009387906 sameAs 3009387906 @default.
- W3009387906 citedByCount "0" @default.
- W3009387906 crossrefType "journal-article" @default.
- W3009387906 hasAuthorship W3009387906A5001044436 @default.
- W3009387906 hasAuthorship W3009387906A5011299807 @default.
- W3009387906 hasAuthorship W3009387906A5025479795 @default.
- W3009387906 hasAuthorship W3009387906A5041389413 @default.
- W3009387906 hasAuthorship W3009387906A5079398219 @default.
- W3009387906 hasConcept C10899652 @default.
- W3009387906 hasConcept C121332964 @default.
- W3009387906 hasConcept C196558001 @default.
- W3009387906 hasConcept C41231900 @default.
- W3009387906 hasConcept C41525736 @default.
- W3009387906 hasConcept C42652486 @default.
- W3009387906 hasConcept C538625479 @default.
- W3009387906 hasConcept C57879066 @default.
- W3009387906 hasConcept C74650414 @default.
- W3009387906 hasConceptScore W3009387906C10899652 @default.
- W3009387906 hasConceptScore W3009387906C121332964 @default.
- W3009387906 hasConceptScore W3009387906C196558001 @default.
- W3009387906 hasConceptScore W3009387906C41231900 @default.
- W3009387906 hasConceptScore W3009387906C41525736 @default.
- W3009387906 hasConceptScore W3009387906C42652486 @default.
- W3009387906 hasConceptScore W3009387906C538625479 @default.
- W3009387906 hasConceptScore W3009387906C57879066 @default.
- W3009387906 hasConceptScore W3009387906C74650414 @default.
- W3009387906 hasLocation W30093879061 @default.
- W3009387906 hasOpenAccess W3009387906 @default.
- W3009387906 hasPrimaryLocation W30093879061 @default.
- W3009387906 hasRelatedWork W1655606999 @default.
- W3009387906 hasRelatedWork W1713867707 @default.
- W3009387906 hasRelatedWork W1983874489 @default.
- W3009387906 hasRelatedWork W2054486847 @default.
- W3009387906 hasRelatedWork W2058407943 @default.
- W3009387906 hasRelatedWork W2065964773 @default.
- W3009387906 hasRelatedWork W2078568843 @default.
- W3009387906 hasRelatedWork W2099397421 @default.
- W3009387906 hasRelatedWork W2123160401 @default.
- W3009387906 hasRelatedWork W2139080848 @default.
- W3009387906 hasRelatedWork W2152898933 @default.
- W3009387906 hasRelatedWork W2194434153 @default.
- W3009387906 hasRelatedWork W2669652692 @default.
- W3009387906 hasRelatedWork W2708641542 @default.
- W3009387906 hasRelatedWork W2949964003 @default.
- W3009387906 hasRelatedWork W3002869936 @default.
- W3009387906 hasRelatedWork W3100671883 @default.
- W3009387906 hasRelatedWork W3104323350 @default.
- W3009387906 hasRelatedWork W3182456509 @default.
- W3009387906 hasRelatedWork W85329377 @default.
- W3009387906 hasVolume "2008" @default.
- W3009387906 isParatext "false" @default.
- W3009387906 isRetracted "false" @default.
- W3009387906 magId "3009387906" @default.
- W3009387906 workType "article" @default.