Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009389630> ?p ?o ?g. }
- W3009389630 endingPage "106208" @default.
- W3009389630 startingPage "106208" @default.
- W3009389630 abstract "In modern manufacturing industry, dynamic scheduling methods are urgently needed with the sharp increase of uncertainty and complexity in production process. To this end, this paper addresses the dynamic flexible job shop scheduling problem (DFJSP) under new job insertions aiming at minimizing the total tardiness. Without lose of generality, the DFJSP can be modeled as a Markov decision process (MDP) where an intelligent agent should successively determine which operation to process next and which machine to assign it on according to the production status of current decision point, making it particularly feasible to be solved by reinforcement learning (RL) methods. In order to cope with continuous production states and learn the most suitable action (i.e. dispatching rule) at each rescheduling point, a deep Q-network (DQN) is developed to address this problem. Six composite dispatching rules are proposed to simultaneously select an operation and assign it on a feasible machine every time an operation is completed or a new job arrives. Seven generic state features are extracted to represent the production status at a rescheduling point. By taking the continuous state features as input to the DQN, the state–action value (Q-value) of each dispatching rule can be obtained. The proposed DQN is trained using deep Q-learning (DQL) enhanced by two improvements namely double DQN and soft target weight update. Moreover, a “softmax” action selection policy is utilized in real implementation of the trained DQN so as to promote the rules with higher Q-values while maintaining the policy entropy. Numerical experiments are conducted on a large number of instances with different production configurations. The results have confirmed both the superiority and generality of DQN compared to each composite rule, other well-known dispatching rules as well as the stand Q-learning-based agent." @default.
- W3009389630 created "2020-03-13" @default.
- W3009389630 creator A5062682047 @default.
- W3009389630 date "2020-06-01" @default.
- W3009389630 modified "2023-10-11" @default.
- W3009389630 title "Dynamic scheduling for flexible job shop with new job insertions by deep reinforcement learning" @default.
- W3009389630 cites W1972328517 @default.
- W3009389630 cites W1992503654 @default.
- W3009389630 cites W1997621428 @default.
- W3009389630 cites W2000764840 @default.
- W3009389630 cites W2003746847 @default.
- W3009389630 cites W2024966195 @default.
- W3009389630 cites W2028145591 @default.
- W3009389630 cites W2039233423 @default.
- W3009389630 cites W2045502230 @default.
- W3009389630 cites W2088865390 @default.
- W3009389630 cites W2095956067 @default.
- W3009389630 cites W2120386704 @default.
- W3009389630 cites W2122549838 @default.
- W3009389630 cites W2145339207 @default.
- W3009389630 cites W2154155503 @default.
- W3009389630 cites W2157846217 @default.
- W3009389630 cites W2305203104 @default.
- W3009389630 cites W2318043594 @default.
- W3009389630 cites W2319312239 @default.
- W3009389630 cites W2491052542 @default.
- W3009389630 cites W2561816553 @default.
- W3009389630 cites W2602695909 @default.
- W3009389630 cites W2618749399 @default.
- W3009389630 cites W2746553466 @default.
- W3009389630 cites W2765715912 @default.
- W3009389630 cites W2790229822 @default.
- W3009389630 cites W2793262237 @default.
- W3009389630 cites W2811338889 @default.
- W3009389630 cites W2891509374 @default.
- W3009389630 cites W4243314580 @default.
- W3009389630 cites W641032154 @default.
- W3009389630 doi "https://doi.org/10.1016/j.asoc.2020.106208" @default.
- W3009389630 hasPublicationYear "2020" @default.
- W3009389630 type Work @default.
- W3009389630 sameAs 3009389630 @default.
- W3009389630 citedByCount "168" @default.
- W3009389630 countsByYear W30093896302020 @default.
- W3009389630 countsByYear W30093896302021 @default.
- W3009389630 countsByYear W30093896302022 @default.
- W3009389630 countsByYear W30093896302023 @default.
- W3009389630 crossrefType "journal-article" @default.
- W3009389630 hasAuthorship W3009389630A5062682047 @default.
- W3009389630 hasConcept C105795698 @default.
- W3009389630 hasConcept C106189395 @default.
- W3009389630 hasConcept C107568181 @default.
- W3009389630 hasConcept C111919701 @default.
- W3009389630 hasConcept C126255220 @default.
- W3009389630 hasConcept C154945302 @default.
- W3009389630 hasConcept C15744967 @default.
- W3009389630 hasConcept C158336966 @default.
- W3009389630 hasConcept C159886148 @default.
- W3009389630 hasConcept C188116033 @default.
- W3009389630 hasConcept C206729178 @default.
- W3009389630 hasConcept C2777243215 @default.
- W3009389630 hasConcept C2778047078 @default.
- W3009389630 hasConcept C2780767217 @default.
- W3009389630 hasConcept C33923547 @default.
- W3009389630 hasConcept C41008148 @default.
- W3009389630 hasConcept C42475967 @default.
- W3009389630 hasConcept C542102704 @default.
- W3009389630 hasConcept C55416958 @default.
- W3009389630 hasConcept C68387754 @default.
- W3009389630 hasConcept C97541855 @default.
- W3009389630 hasConceptScore W3009389630C105795698 @default.
- W3009389630 hasConceptScore W3009389630C106189395 @default.
- W3009389630 hasConceptScore W3009389630C107568181 @default.
- W3009389630 hasConceptScore W3009389630C111919701 @default.
- W3009389630 hasConceptScore W3009389630C126255220 @default.
- W3009389630 hasConceptScore W3009389630C154945302 @default.
- W3009389630 hasConceptScore W3009389630C15744967 @default.
- W3009389630 hasConceptScore W3009389630C158336966 @default.
- W3009389630 hasConceptScore W3009389630C159886148 @default.
- W3009389630 hasConceptScore W3009389630C188116033 @default.
- W3009389630 hasConceptScore W3009389630C206729178 @default.
- W3009389630 hasConceptScore W3009389630C2777243215 @default.
- W3009389630 hasConceptScore W3009389630C2778047078 @default.
- W3009389630 hasConceptScore W3009389630C2780767217 @default.
- W3009389630 hasConceptScore W3009389630C33923547 @default.
- W3009389630 hasConceptScore W3009389630C41008148 @default.
- W3009389630 hasConceptScore W3009389630C42475967 @default.
- W3009389630 hasConceptScore W3009389630C542102704 @default.
- W3009389630 hasConceptScore W3009389630C55416958 @default.
- W3009389630 hasConceptScore W3009389630C68387754 @default.
- W3009389630 hasConceptScore W3009389630C97541855 @default.
- W3009389630 hasFunder F4320335777 @default.
- W3009389630 hasLocation W30093896301 @default.
- W3009389630 hasOpenAccess W3009389630 @default.
- W3009389630 hasPrimaryLocation W30093896301 @default.
- W3009389630 hasRelatedWork W1980423862 @default.
- W3009389630 hasRelatedWork W1980879778 @default.
- W3009389630 hasRelatedWork W2034702700 @default.
- W3009389630 hasRelatedWork W2054689640 @default.