Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009396111> ?p ?o ?g. }
- W3009396111 endingPage "416" @default.
- W3009396111 startingPage "416" @default.
- W3009396111 abstract "Mathematical modelling to compute ground truth from 3D images is an area of research that can strongly benefit from machine learning methods. Deep neural networks (DNNs) are state-of-the-art methods design for solving these kinds of difficulties. Convolutional neural networks (CNNs), as one class of DNNs, can overcome special requirements of quantitative analysis especially when image segmentation is needed. This article presents a system that uses a cascade of CNNs with symmetric blocks of layers in chain, dedicated to 3D image segmentation from microscopic images of 3D nuclei. The system is designed through eight experiments that differ in following aspects: number of training slices and 3D samples for training, usage of pre-trained CNNs and number of slices and 3D samples for validation. CNNs parameters are optimized using linear, brute force, and random combinatorics, followed by voter and median operations. Data augmentation techniques such as reflection, translation and rotation are used in order to produce sufficient training set for CNNs. Optimal CNN parameters are reached by defining 11 standard and two proposed metrics. Finally, benchmarking demonstrates that CNNs improve segmentation accuracy, reliability and increased annotation accuracy, confirming the relevance of CNNs to generate high-throughput mathematical ground truth 3D images." @default.
- W3009396111 created "2020-03-13" @default.
- W3009396111 creator A5016409272 @default.
- W3009396111 creator A5018361811 @default.
- W3009396111 creator A5025625847 @default.
- W3009396111 creator A5042995991 @default.
- W3009396111 creator A5051240793 @default.
- W3009396111 creator A5089003155 @default.
- W3009396111 date "2020-03-05" @default.
- W3009396111 modified "2023-09-30" @default.
- W3009396111 title "Mathematical Modelling of Ground Truth Image for 3D Microscopic Objects Using Cascade of Convolutional Neural Networks Optimized with Parameters’ Combinations Generators" @default.
- W3009396111 cites W1159302035 @default.
- W3009396111 cites W1987869189 @default.
- W3009396111 cites W2008411978 @default.
- W3009396111 cites W2012071815 @default.
- W3009396111 cites W2030644393 @default.
- W3009396111 cites W2033403400 @default.
- W3009396111 cites W2060403232 @default.
- W3009396111 cites W2082526668 @default.
- W3009396111 cites W2107554012 @default.
- W3009396111 cites W2116877738 @default.
- W3009396111 cites W2133059825 @default.
- W3009396111 cites W2136825928 @default.
- W3009396111 cites W2142916759 @default.
- W3009396111 cites W2147728748 @default.
- W3009396111 cites W2152632881 @default.
- W3009396111 cites W2158698691 @default.
- W3009396111 cites W2167279371 @default.
- W3009396111 cites W2313289912 @default.
- W3009396111 cites W2521803624 @default.
- W3009396111 cites W2614949728 @default.
- W3009396111 cites W2744103196 @default.
- W3009396111 cites W2766987560 @default.
- W3009396111 cites W2768673271 @default.
- W3009396111 cites W2790729248 @default.
- W3009396111 cites W2796672611 @default.
- W3009396111 cites W2888612993 @default.
- W3009396111 cites W2910904027 @default.
- W3009396111 cites W2917942747 @default.
- W3009396111 cites W2948730236 @default.
- W3009396111 cites W2952222533 @default.
- W3009396111 cites W2961912654 @default.
- W3009396111 cites W2972892520 @default.
- W3009396111 cites W2980471673 @default.
- W3009396111 cites W3098917838 @default.
- W3009396111 cites W4235169531 @default.
- W3009396111 doi "https://doi.org/10.3390/sym12030416" @default.
- W3009396111 hasPublicationYear "2020" @default.
- W3009396111 type Work @default.
- W3009396111 sameAs 3009396111 @default.
- W3009396111 citedByCount "1" @default.
- W3009396111 countsByYear W30093961112022 @default.
- W3009396111 crossrefType "journal-article" @default.
- W3009396111 hasAuthorship W3009396111A5016409272 @default.
- W3009396111 hasAuthorship W3009396111A5018361811 @default.
- W3009396111 hasAuthorship W3009396111A5025625847 @default.
- W3009396111 hasAuthorship W3009396111A5042995991 @default.
- W3009396111 hasAuthorship W3009396111A5051240793 @default.
- W3009396111 hasAuthorship W3009396111A5089003155 @default.
- W3009396111 hasBestOaLocation W30093961111 @default.
- W3009396111 hasConcept C115961682 @default.
- W3009396111 hasConcept C144133560 @default.
- W3009396111 hasConcept C146849305 @default.
- W3009396111 hasConcept C153180895 @default.
- W3009396111 hasConcept C154945302 @default.
- W3009396111 hasConcept C162853370 @default.
- W3009396111 hasConcept C41008148 @default.
- W3009396111 hasConcept C74050887 @default.
- W3009396111 hasConcept C81363708 @default.
- W3009396111 hasConcept C86251818 @default.
- W3009396111 hasConcept C89600930 @default.
- W3009396111 hasConceptScore W3009396111C115961682 @default.
- W3009396111 hasConceptScore W3009396111C144133560 @default.
- W3009396111 hasConceptScore W3009396111C146849305 @default.
- W3009396111 hasConceptScore W3009396111C153180895 @default.
- W3009396111 hasConceptScore W3009396111C154945302 @default.
- W3009396111 hasConceptScore W3009396111C162853370 @default.
- W3009396111 hasConceptScore W3009396111C41008148 @default.
- W3009396111 hasConceptScore W3009396111C74050887 @default.
- W3009396111 hasConceptScore W3009396111C81363708 @default.
- W3009396111 hasConceptScore W3009396111C86251818 @default.
- W3009396111 hasConceptScore W3009396111C89600930 @default.
- W3009396111 hasIssue "3" @default.
- W3009396111 hasLocation W30093961111 @default.
- W3009396111 hasLocation W30093961112 @default.
- W3009396111 hasOpenAccess W3009396111 @default.
- W3009396111 hasPrimaryLocation W30093961111 @default.
- W3009396111 hasRelatedWork W158826679 @default.
- W3009396111 hasRelatedWork W2441762250 @default.
- W3009396111 hasRelatedWork W2549299049 @default.
- W3009396111 hasRelatedWork W2767651786 @default.
- W3009396111 hasRelatedWork W2912288872 @default.
- W3009396111 hasRelatedWork W2946637494 @default.
- W3009396111 hasRelatedWork W2973133528 @default.
- W3009396111 hasRelatedWork W4200528772 @default.
- W3009396111 hasRelatedWork W4311496088 @default.
- W3009396111 hasRelatedWork W4312050694 @default.
- W3009396111 hasVolume "12" @default.