Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009400679> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3009400679 endingPage "162" @default.
- W3009400679 startingPage "146" @default.
- W3009400679 abstract "Detection of anomalies in a given data set is a vital step in several applications in cybersecurity; including intrusion detection, fraud, and social network analysis. Many of these techniques detect anomalies by examining graph-based data. Analyzing graphs makes it possible to capture relationships, communities, as well as anomalies. The advantage of using graphs is that many real-life situations can be easily modeled by a graph that captures their structure and inter-dependencies. Although anomaly detection in graphs dates back to the 1990s, recent advances in research utilized machine learning methods for anomaly detection over graphs. This chapter will concentrate on static graphs (both labeled and unlabeled), and the chapter summarizes some of these recent studies in machine learning for anomaly detection in graphs. This includes methods such as support vector machines, neural networks, generative neural networks, and deep learning methods. The chapter will reflect the success and challenges of using these methods in the context of graph-based anomaly detection." @default.
- W3009400679 created "2020-03-13" @default.
- W3009400679 creator A5018666424 @default.
- W3009400679 date "2020-01-01" @default.
- W3009400679 modified "2023-09-23" @default.
- W3009400679 title "A Review of Machine Learning Techniques for Anomaly Detection in Static Graphs" @default.
- W3009400679 cites W1570205513 @default.
- W3009400679 cites W1616338336 @default.
- W3009400679 cites W1977970897 @default.
- W3009400679 cites W1980452149 @default.
- W3009400679 cites W1990280147 @default.
- W3009400679 cites W2001325956 @default.
- W3009400679 cites W2028637253 @default.
- W3009400679 cites W2032280284 @default.
- W3009400679 cites W2034572462 @default.
- W3009400679 cites W2057212005 @default.
- W3009400679 cites W2057909588 @default.
- W3009400679 cites W2066636486 @default.
- W3009400679 cites W2089554624 @default.
- W3009400679 cites W2095377587 @default.
- W3009400679 cites W2112765151 @default.
- W3009400679 cites W2124168655 @default.
- W3009400679 cites W2126185296 @default.
- W3009400679 cites W2129129488 @default.
- W3009400679 cites W2134008243 @default.
- W3009400679 cites W2147620601 @default.
- W3009400679 cites W2149169025 @default.
- W3009400679 cites W2153959628 @default.
- W3009400679 cites W2156491077 @default.
- W3009400679 cites W2224609888 @default.
- W3009400679 cites W2293496281 @default.
- W3009400679 cites W2554388950 @default.
- W3009400679 cites W2613920221 @default.
- W3009400679 cites W2776832302 @default.
- W3009400679 cites W2808771744 @default.
- W3009400679 cites W2886491562 @default.
- W3009400679 cites W2910705983 @default.
- W3009400679 cites W2944250323 @default.
- W3009400679 cites W2963395938 @default.
- W3009400679 cites W2964184494 @default.
- W3009400679 cites W2983576094 @default.
- W3009400679 cites W2998313947 @default.
- W3009400679 cites W3150031559 @default.
- W3009400679 cites W4232932184 @default.
- W3009400679 doi "https://doi.org/10.4018/978-1-7998-2418-3.ch007" @default.
- W3009400679 hasPublicationYear "2020" @default.
- W3009400679 type Work @default.
- W3009400679 sameAs 3009400679 @default.
- W3009400679 citedByCount "0" @default.
- W3009400679 crossrefType "book-chapter" @default.
- W3009400679 hasAuthorship W3009400679A5018666424 @default.
- W3009400679 hasConcept C119857082 @default.
- W3009400679 hasConcept C12267149 @default.
- W3009400679 hasConcept C124101348 @default.
- W3009400679 hasConcept C132525143 @default.
- W3009400679 hasConcept C154945302 @default.
- W3009400679 hasConcept C166957645 @default.
- W3009400679 hasConcept C205649164 @default.
- W3009400679 hasConcept C2779343474 @default.
- W3009400679 hasConcept C2780741293 @default.
- W3009400679 hasConcept C35525427 @default.
- W3009400679 hasConcept C39890363 @default.
- W3009400679 hasConcept C41008148 @default.
- W3009400679 hasConcept C50644808 @default.
- W3009400679 hasConcept C739882 @default.
- W3009400679 hasConcept C80444323 @default.
- W3009400679 hasConceptScore W3009400679C119857082 @default.
- W3009400679 hasConceptScore W3009400679C12267149 @default.
- W3009400679 hasConceptScore W3009400679C124101348 @default.
- W3009400679 hasConceptScore W3009400679C132525143 @default.
- W3009400679 hasConceptScore W3009400679C154945302 @default.
- W3009400679 hasConceptScore W3009400679C166957645 @default.
- W3009400679 hasConceptScore W3009400679C205649164 @default.
- W3009400679 hasConceptScore W3009400679C2779343474 @default.
- W3009400679 hasConceptScore W3009400679C2780741293 @default.
- W3009400679 hasConceptScore W3009400679C35525427 @default.
- W3009400679 hasConceptScore W3009400679C39890363 @default.
- W3009400679 hasConceptScore W3009400679C41008148 @default.
- W3009400679 hasConceptScore W3009400679C50644808 @default.
- W3009400679 hasConceptScore W3009400679C739882 @default.
- W3009400679 hasConceptScore W3009400679C80444323 @default.
- W3009400679 hasLocation W30094006791 @default.
- W3009400679 hasOpenAccess W3009400679 @default.
- W3009400679 hasPrimaryLocation W30094006791 @default.
- W3009400679 hasRelatedWork W2032568277 @default.
- W3009400679 hasRelatedWork W2355809385 @default.
- W3009400679 hasRelatedWork W23839355 @default.
- W3009400679 hasRelatedWork W2771633073 @default.
- W3009400679 hasRelatedWork W2798481441 @default.
- W3009400679 hasRelatedWork W3194539120 @default.
- W3009400679 hasRelatedWork W4205958290 @default.
- W3009400679 hasRelatedWork W4282981610 @default.
- W3009400679 hasRelatedWork W4362499384 @default.
- W3009400679 hasRelatedWork W6091113 @default.
- W3009400679 isParatext "false" @default.
- W3009400679 isRetracted "false" @default.
- W3009400679 magId "3009400679" @default.
- W3009400679 workType "book-chapter" @default.