Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009422846> ?p ?o ?g. }
- W3009422846 endingPage "2684" @default.
- W3009422846 startingPage "2674" @default.
- W3009422846 abstract "High nonlinearities of switched reluctance motor (SRM) caused by its double salient structure limit its industrial application in electric vehicles (EVs). In this article, an algorithm called maximum-correntropy-criterion-based least-squares support vector regression (MCC-LSSVR) is applied to the nonlinear modeling of a segmented-rotor SRM (SSRM). First, the mathematical model of SSRM is established. Finite element analysis (FEA) is carried out to obtain the static flux linkage and torque. Then, the intelligent algorithm MCC-LSSVR using an adaptive weight to avoid the interference of outliers is introduced. It is verified and applied to SSRM modeling. The results show that MCC-LSSVR exhibits a better performance than other intelligent algorithms. Finally, simulation and experimental validation under various modes are given to verify the accuracy and effectiveness of the MCC-LSSVR model. It is shown that the simulation and experimental results are in good agreement." @default.
- W3009422846 created "2020-03-13" @default.
- W3009422846 creator A5010949964 @default.
- W3009422846 creator A5028615584 @default.
- W3009422846 creator A5034874264 @default.
- W3009422846 creator A5044180526 @default.
- W3009422846 creator A5057276700 @default.
- W3009422846 creator A5078251845 @default.
- W3009422846 date "2021-06-01" @default.
- W3009422846 modified "2023-10-16" @default.
- W3009422846 title "Torque Modeling of a Segmented-Rotor SRM Using Maximum-Correntropy-Criterion-Based LSSVR for Torque Calculation of EVs" @default.
- W3009422846 cites W1975734802 @default.
- W3009422846 cites W1985819320 @default.
- W3009422846 cites W2061438946 @default.
- W3009422846 cites W2066436074 @default.
- W3009422846 cites W2095639539 @default.
- W3009422846 cites W2098513893 @default.
- W3009422846 cites W2132839052 @default.
- W3009422846 cites W2158220540 @default.
- W3009422846 cites W2166349895 @default.
- W3009422846 cites W2243270250 @default.
- W3009422846 cites W2283743710 @default.
- W3009422846 cites W2289344356 @default.
- W3009422846 cites W2343937981 @default.
- W3009422846 cites W2344872827 @default.
- W3009422846 cites W2430166675 @default.
- W3009422846 cites W2533256569 @default.
- W3009422846 cites W2624335303 @default.
- W3009422846 cites W2734714437 @default.
- W3009422846 cites W2793754989 @default.
- W3009422846 cites W2797580837 @default.
- W3009422846 cites W2804382230 @default.
- W3009422846 cites W2809699333 @default.
- W3009422846 cites W2809945983 @default.
- W3009422846 cites W2942383625 @default.
- W3009422846 cites W2949324758 @default.
- W3009422846 cites W2950890473 @default.
- W3009422846 cites W2959375935 @default.
- W3009422846 cites W2965589541 @default.
- W3009422846 cites W2968230023 @default.
- W3009422846 cites W2972061511 @default.
- W3009422846 cites W2999650510 @default.
- W3009422846 doi "https://doi.org/10.1109/jestpe.2020.2977957" @default.
- W3009422846 hasPublicationYear "2021" @default.
- W3009422846 type Work @default.
- W3009422846 sameAs 3009422846 @default.
- W3009422846 citedByCount "31" @default.
- W3009422846 countsByYear W30094228462020 @default.
- W3009422846 countsByYear W30094228462021 @default.
- W3009422846 countsByYear W30094228462022 @default.
- W3009422846 countsByYear W30094228462023 @default.
- W3009422846 crossrefType "journal-article" @default.
- W3009422846 hasAuthorship W3009422846A5010949964 @default.
- W3009422846 hasAuthorship W3009422846A5028615584 @default.
- W3009422846 hasAuthorship W3009422846A5034874264 @default.
- W3009422846 hasAuthorship W3009422846A5044180526 @default.
- W3009422846 hasAuthorship W3009422846A5057276700 @default.
- W3009422846 hasAuthorship W3009422846A5078251845 @default.
- W3009422846 hasConcept C105795698 @default.
- W3009422846 hasConcept C109871850 @default.
- W3009422846 hasConcept C11413529 @default.
- W3009422846 hasConcept C119599485 @default.
- W3009422846 hasConcept C121332964 @default.
- W3009422846 hasConcept C12267149 @default.
- W3009422846 hasConcept C127413603 @default.
- W3009422846 hasConcept C135628077 @default.
- W3009422846 hasConcept C144171764 @default.
- W3009422846 hasConcept C154945302 @default.
- W3009422846 hasConcept C155343825 @default.
- W3009422846 hasConcept C158622935 @default.
- W3009422846 hasConcept C165801399 @default.
- W3009422846 hasConcept C17281054 @default.
- W3009422846 hasConcept C185429906 @default.
- W3009422846 hasConcept C2775924081 @default.
- W3009422846 hasConcept C33923547 @default.
- W3009422846 hasConcept C41008148 @default.
- W3009422846 hasConcept C47446073 @default.
- W3009422846 hasConcept C62520636 @default.
- W3009422846 hasConcept C66938386 @default.
- W3009422846 hasConcept C78519656 @default.
- W3009422846 hasConcept C79337645 @default.
- W3009422846 hasConcept C80962145 @default.
- W3009422846 hasConcept C97355855 @default.
- W3009422846 hasConcept C9936470 @default.
- W3009422846 hasConceptScore W3009422846C105795698 @default.
- W3009422846 hasConceptScore W3009422846C109871850 @default.
- W3009422846 hasConceptScore W3009422846C11413529 @default.
- W3009422846 hasConceptScore W3009422846C119599485 @default.
- W3009422846 hasConceptScore W3009422846C121332964 @default.
- W3009422846 hasConceptScore W3009422846C12267149 @default.
- W3009422846 hasConceptScore W3009422846C127413603 @default.
- W3009422846 hasConceptScore W3009422846C135628077 @default.
- W3009422846 hasConceptScore W3009422846C144171764 @default.
- W3009422846 hasConceptScore W3009422846C154945302 @default.
- W3009422846 hasConceptScore W3009422846C155343825 @default.
- W3009422846 hasConceptScore W3009422846C158622935 @default.
- W3009422846 hasConceptScore W3009422846C165801399 @default.
- W3009422846 hasConceptScore W3009422846C17281054 @default.