Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009496543> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3009496543 endingPage "101685" @default.
- W3009496543 startingPage "101685" @default.
- W3009496543 abstract "Simultaneous and automatic segmentation of the blood pool and myocardium is an important precondition for early diagnosis and pre-operative planning in patients with complex congenital heart disease. However, due to the high diversity of cardiovascular structures and changes in mechanical properties caused by cardiac defects, the segmentation task still faces great challenges. To overcome these challenges, in this study we propose an integrated multi-task deep learning framework based on the dilated residual and hybrid pyramid pooling network (DRHPPN) for joint segmentation of the blood pool and myocardium. The framework consists of three closely connected progressive sub-networks. An inception module is used to realize the initial multi-level feature representation of cardiovascular images. A dilated residual network (DRN), as the main body of feature extraction and pixel classification, preliminary predicts segmentation regions. A hybrid pyramid pooling network (HPPN) is designed for facilitating the aggregation of local information to global information, which complements DRN. Extensive experiments on three-dimensional cardiovascular magnetic resonance (CMR) images (the available dataset of the MICCAI 2016 HVSMR challenge) demonstrate that our approach can accurately segment the blood pool and myocardium and achieve competitive performance compared with state-of-the-art segmentation methods." @default.
- W3009496543 created "2020-03-13" @default.
- W3009496543 creator A5017953851 @default.
- W3009496543 creator A5032862739 @default.
- W3009496543 creator A5043296622 @default.
- W3009496543 creator A5046670716 @default.
- W3009496543 creator A5050454479 @default.
- W3009496543 creator A5067483347 @default.
- W3009496543 creator A5070373092 @default.
- W3009496543 date "2020-05-01" @default.
- W3009496543 modified "2023-10-10" @default.
- W3009496543 title "An integrated deep learning framework for joint segmentation of blood pool and myocardium" @default.
- W3009496543 cites W1820889844 @default.
- W3009496543 cites W1987512289 @default.
- W3009496543 cites W2010293459 @default.
- W3009496543 cites W2042089741 @default.
- W3009496543 cites W2042771620 @default.
- W3009496543 cites W2045784023 @default.
- W3009496543 cites W2109255472 @default.
- W3009496543 cites W2124632179 @default.
- W3009496543 cites W2412782625 @default.
- W3009496543 cites W2573673059 @default.
- W3009496543 cites W2608353599 @default.
- W3009496543 cites W2613041730 @default.
- W3009496543 cites W2769449599 @default.
- W3009496543 cites W2888570268 @default.
- W3009496543 cites W2901161734 @default.
- W3009496543 cites W2906658447 @default.
- W3009496543 cites W2914679945 @default.
- W3009496543 cites W2959170286 @default.
- W3009496543 doi "https://doi.org/10.1016/j.media.2020.101685" @default.
- W3009496543 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32272344" @default.
- W3009496543 hasPublicationYear "2020" @default.
- W3009496543 type Work @default.
- W3009496543 sameAs 3009496543 @default.
- W3009496543 citedByCount "13" @default.
- W3009496543 countsByYear W30094965432021 @default.
- W3009496543 countsByYear W30094965432022 @default.
- W3009496543 countsByYear W30094965432023 @default.
- W3009496543 crossrefType "journal-article" @default.
- W3009496543 hasAuthorship W3009496543A5017953851 @default.
- W3009496543 hasAuthorship W3009496543A5032862739 @default.
- W3009496543 hasAuthorship W3009496543A5043296622 @default.
- W3009496543 hasAuthorship W3009496543A5046670716 @default.
- W3009496543 hasAuthorship W3009496543A5050454479 @default.
- W3009496543 hasAuthorship W3009496543A5067483347 @default.
- W3009496543 hasAuthorship W3009496543A5070373092 @default.
- W3009496543 hasConcept C108583219 @default.
- W3009496543 hasConcept C127413603 @default.
- W3009496543 hasConcept C153180895 @default.
- W3009496543 hasConcept C154945302 @default.
- W3009496543 hasConcept C170154142 @default.
- W3009496543 hasConcept C18555067 @default.
- W3009496543 hasConcept C31972630 @default.
- W3009496543 hasConcept C41008148 @default.
- W3009496543 hasConcept C89600930 @default.
- W3009496543 hasConceptScore W3009496543C108583219 @default.
- W3009496543 hasConceptScore W3009496543C127413603 @default.
- W3009496543 hasConceptScore W3009496543C153180895 @default.
- W3009496543 hasConceptScore W3009496543C154945302 @default.
- W3009496543 hasConceptScore W3009496543C170154142 @default.
- W3009496543 hasConceptScore W3009496543C18555067 @default.
- W3009496543 hasConceptScore W3009496543C31972630 @default.
- W3009496543 hasConceptScore W3009496543C41008148 @default.
- W3009496543 hasConceptScore W3009496543C89600930 @default.
- W3009496543 hasFunder F4320321001 @default.
- W3009496543 hasFunder F4320334897 @default.
- W3009496543 hasLocation W30094965431 @default.
- W3009496543 hasOpenAccess W3009496543 @default.
- W3009496543 hasPrimaryLocation W30094965431 @default.
- W3009496543 hasRelatedWork W1669643531 @default.
- W3009496543 hasRelatedWork W2008656436 @default.
- W3009496543 hasRelatedWork W2039154422 @default.
- W3009496543 hasRelatedWork W2134924024 @default.
- W3009496543 hasRelatedWork W2517104666 @default.
- W3009496543 hasRelatedWork W2790662084 @default.
- W3009496543 hasRelatedWork W2895616727 @default.
- W3009496543 hasRelatedWork W2948658236 @default.
- W3009496543 hasRelatedWork W4293211451 @default.
- W3009496543 hasRelatedWork W2182382398 @default.
- W3009496543 hasVolume "62" @default.
- W3009496543 isParatext "false" @default.
- W3009496543 isRetracted "false" @default.
- W3009496543 magId "3009496543" @default.
- W3009496543 workType "article" @default.