Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009545797> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3009545797 endingPage "700" @default.
- W3009545797 startingPage "691" @default.
- W3009545797 abstract "Abstract Sudden cardiac death is the result of abnormal heart conditions. Therefore, early detection of such abnormal conditions is vital to identify heart problems. Hence, in this paper, we aim to present a new computer-aided diagnosis (CAD) method based on time-frequency analysis of electrocardiogram (ECG) signals and deep neural networks for arrhythmia detection. Time-frequency transforms have the capability of providing spectral information at different times, which is very useful for analyzing non-stationary signals. On the other side, entropy is an attractive measurement from ECG signals which can distinguish different types of them. In this paper, time-frequency spectral entropy is proposed to extract the efficient features from ECG signals. All computed entropies cannot provide separability among different classes, two-directional two-dimensional principal component analysis (2D2PCA) can be used to reduce the dimension of the extracted features. Finally, the convolutional neural network (CNN) classifies the time-frequency features to diagnose the ECG beat signals and detect arrhythmias. The results show that the spectral entropy can provide good separation between different among ECG beats and the proposed method outperforms the recently introduced method for analyzing ECG signals." @default.
- W3009545797 created "2020-03-13" @default.
- W3009545797 creator A5046422606 @default.
- W3009545797 creator A5062887426 @default.
- W3009545797 creator A5066965810 @default.
- W3009545797 date "2020-04-01" @default.
- W3009545797 modified "2023-10-18" @default.
- W3009545797 title "Spectral entropy and deep convolutional neural network for ECG beat classification" @default.
- W3009545797 cites W1541521713 @default.
- W3009545797 cites W1986966459 @default.
- W3009545797 cites W2005766354 @default.
- W3009545797 cites W2072193862 @default.
- W3009545797 cites W2077532788 @default.
- W3009545797 cites W2083192087 @default.
- W3009545797 cites W2095409369 @default.
- W3009545797 cites W2098765040 @default.
- W3009545797 cites W2100537461 @default.
- W3009545797 cites W2101166342 @default.
- W3009545797 cites W2118719397 @default.
- W3009545797 cites W2145044818 @default.
- W3009545797 cites W2163430278 @default.
- W3009545797 cites W2251133041 @default.
- W3009545797 cites W2289846183 @default.
- W3009545797 cites W2291961022 @default.
- W3009545797 cites W2396076036 @default.
- W3009545797 cites W2412782625 @default.
- W3009545797 cites W2502818920 @default.
- W3009545797 cites W2591436332 @default.
- W3009545797 cites W2612184698 @default.
- W3009545797 cites W2627037849 @default.
- W3009545797 cites W2753097180 @default.
- W3009545797 cites W2766348047 @default.
- W3009545797 cites W2774421554 @default.
- W3009545797 cites W2778545923 @default.
- W3009545797 cites W2781924583 @default.
- W3009545797 cites W2782273434 @default.
- W3009545797 cites W2792851582 @default.
- W3009545797 cites W2793933216 @default.
- W3009545797 cites W2794228650 @default.
- W3009545797 cites W2794448858 @default.
- W3009545797 cites W2805227459 @default.
- W3009545797 cites W2806806521 @default.
- W3009545797 cites W2807544126 @default.
- W3009545797 cites W2884697329 @default.
- W3009545797 cites W2884754815 @default.
- W3009545797 cites W2888491225 @default.
- W3009545797 cites W2889838428 @default.
- W3009545797 cites W2899586412 @default.
- W3009545797 cites W2902644322 @default.
- W3009545797 cites W2907847267 @default.
- W3009545797 doi "https://doi.org/10.1016/j.bbe.2020.02.004" @default.
- W3009545797 hasPublicationYear "2020" @default.
- W3009545797 type Work @default.
- W3009545797 sameAs 3009545797 @default.
- W3009545797 citedByCount "35" @default.
- W3009545797 countsByYear W30095457972020 @default.
- W3009545797 countsByYear W30095457972021 @default.
- W3009545797 countsByYear W30095457972022 @default.
- W3009545797 countsByYear W30095457972023 @default.
- W3009545797 crossrefType "journal-article" @default.
- W3009545797 hasAuthorship W3009545797A5046422606 @default.
- W3009545797 hasAuthorship W3009545797A5062887426 @default.
- W3009545797 hasAuthorship W3009545797A5066965810 @default.
- W3009545797 hasConcept C121332964 @default.
- W3009545797 hasConcept C153180895 @default.
- W3009545797 hasConcept C154945302 @default.
- W3009545797 hasConcept C189809214 @default.
- W3009545797 hasConcept C24890656 @default.
- W3009545797 hasConcept C41008148 @default.
- W3009545797 hasConcept C81363708 @default.
- W3009545797 hasConceptScore W3009545797C121332964 @default.
- W3009545797 hasConceptScore W3009545797C153180895 @default.
- W3009545797 hasConceptScore W3009545797C154945302 @default.
- W3009545797 hasConceptScore W3009545797C189809214 @default.
- W3009545797 hasConceptScore W3009545797C24890656 @default.
- W3009545797 hasConceptScore W3009545797C41008148 @default.
- W3009545797 hasConceptScore W3009545797C81363708 @default.
- W3009545797 hasIssue "2" @default.
- W3009545797 hasLocation W30095457971 @default.
- W3009545797 hasOpenAccess W3009545797 @default.
- W3009545797 hasPrimaryLocation W30095457971 @default.
- W3009545797 hasRelatedWork W2175746458 @default.
- W3009545797 hasRelatedWork W2732542196 @default.
- W3009545797 hasRelatedWork W2738221750 @default.
- W3009545797 hasRelatedWork W2758063741 @default.
- W3009545797 hasRelatedWork W2760085659 @default.
- W3009545797 hasRelatedWork W2912288872 @default.
- W3009545797 hasRelatedWork W3012978760 @default.
- W3009545797 hasRelatedWork W3081496756 @default.
- W3009545797 hasRelatedWork W3093612317 @default.
- W3009545797 hasRelatedWork W4304820710 @default.
- W3009545797 hasVolume "40" @default.
- W3009545797 isParatext "false" @default.
- W3009545797 isRetracted "false" @default.
- W3009545797 magId "3009545797" @default.
- W3009545797 workType "article" @default.