Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009551409> ?p ?o ?g. }
- W3009551409 endingPage "25" @default.
- W3009551409 startingPage "1" @default.
- W3009551409 abstract "Treatment effect plays an important role on decision making in many fields, such as social marketing, healthcare, and public policy. The key challenge on estimating treatment effect in the wild observational studies is to handle confounding bias induced by imbalance of the confounder distributions between treated and control units. Traditional methods remove confounding bias by re-weighting units with supposedly accurate propensity score estimation under the unconfoundedness assumption. Controlling high-dimensional variables may make the unconfoundedness assumption more plausible, but poses new challenge on accurate propensity score estimation. One strand of recent literature seeks to directly optimize weights to balance confounder distributions, bypassing propensity score estimation. But existing balancing methods fail to do selection and differentiation among the pool of a large number of potential confounders, leading to possible underperformance in many high-dimensional settings. In this article, we propose a data-driven Differentiated Confounder Balancing (DCB) algorithm to jointly select confounders, differentiate weights of confounders and balance confounder distributions for treatment effect estimation in the wild high-dimensional settings. Besides, under some settings with heavy confounding bias, in order to further reduce the bias and variance of estimated treatment effect, we propose a Regression Adjusted Differentiated Confounder Balancing (RA-DCB) algorithm based on our DCB algorithm by incorporating outcome regression adjustment. The synergistic learning algorithms we proposed are more capable of reducing the confounding bias in many observational studies. To validate the effectiveness of our DCB and RA-DCB algorithms, we conduct extensive experiments on both synthetic and real-world datasets. The experimental results clearly demonstrate that our algorithms outperform the state-of-the-art methods. By incorporating regression adjustment, our RA-DCB algorithm achieves more precise estimation on treatment effect than DCB algorithm, especially under the settings with heavy confounding bias. Moreover, we show that the top features ranked by our algorithm generate accurate prediction of online advertising effect." @default.
- W3009551409 created "2020-03-13" @default.
- W3009551409 creator A5004882141 @default.
- W3009551409 creator A5009228005 @default.
- W3009551409 creator A5024669831 @default.
- W3009551409 creator A5034995105 @default.
- W3009551409 creator A5041727387 @default.
- W3009551409 creator A5066198756 @default.
- W3009551409 creator A5074821819 @default.
- W3009551409 date "2019-12-13" @default.
- W3009551409 modified "2023-10-17" @default.
- W3009551409 title "Treatment Effect Estimation via Differentiated Confounder Balancing and Regression" @default.
- W3009551409 cites W1538826226 @default.
- W3009551409 cites W1978108654 @default.
- W3009551409 cites W1991114736 @default.
- W3009551409 cites W2002646960 @default.
- W3009551409 cites W2025309870 @default.
- W3009551409 cites W2028040032 @default.
- W3009551409 cites W2036193982 @default.
- W3009551409 cites W2063910719 @default.
- W3009551409 cites W2100532505 @default.
- W3009551409 cites W2120817734 @default.
- W3009551409 cites W2121878111 @default.
- W3009551409 cites W2132324013 @default.
- W3009551409 cites W2136484149 @default.
- W3009551409 cites W2137370054 @default.
- W3009551409 cites W2148472246 @default.
- W3009551409 cites W2150291618 @default.
- W3009551409 cites W2154053567 @default.
- W3009551409 cites W2160092878 @default.
- W3009551409 cites W2168458505 @default.
- W3009551409 cites W2286797211 @default.
- W3009551409 cites W2469047452 @default.
- W3009551409 cites W2476591869 @default.
- W3009551409 cites W2584124644 @default.
- W3009551409 cites W2741791470 @default.
- W3009551409 cites W2742797692 @default.
- W3009551409 cites W2886175855 @default.
- W3009551409 cites W2963608360 @default.
- W3009551409 cites W2963709384 @default.
- W3009551409 cites W2964254462 @default.
- W3009551409 cites W3122812581 @default.
- W3009551409 cites W4244393449 @default.
- W3009551409 doi "https://doi.org/10.1145/3365677" @default.
- W3009551409 hasPublicationYear "2019" @default.
- W3009551409 type Work @default.
- W3009551409 sameAs 3009551409 @default.
- W3009551409 citedByCount "9" @default.
- W3009551409 countsByYear W30095514092020 @default.
- W3009551409 countsByYear W30095514092021 @default.
- W3009551409 countsByYear W30095514092022 @default.
- W3009551409 crossrefType "journal-article" @default.
- W3009551409 hasAuthorship W3009551409A5004882141 @default.
- W3009551409 hasAuthorship W3009551409A5009228005 @default.
- W3009551409 hasAuthorship W3009551409A5024669831 @default.
- W3009551409 hasAuthorship W3009551409A5034995105 @default.
- W3009551409 hasAuthorship W3009551409A5041727387 @default.
- W3009551409 hasAuthorship W3009551409A5066198756 @default.
- W3009551409 hasAuthorship W3009551409A5074821819 @default.
- W3009551409 hasConcept C105795698 @default.
- W3009551409 hasConcept C121955636 @default.
- W3009551409 hasConcept C126838900 @default.
- W3009551409 hasConcept C127413603 @default.
- W3009551409 hasConcept C144133560 @default.
- W3009551409 hasConcept C149782125 @default.
- W3009551409 hasConcept C17923572 @default.
- W3009551409 hasConcept C183115368 @default.
- W3009551409 hasConcept C196083921 @default.
- W3009551409 hasConcept C201995342 @default.
- W3009551409 hasConcept C23131810 @default.
- W3009551409 hasConcept C33923547 @default.
- W3009551409 hasConcept C40423286 @default.
- W3009551409 hasConcept C41008148 @default.
- W3009551409 hasConcept C71924100 @default.
- W3009551409 hasConcept C77350462 @default.
- W3009551409 hasConcept C83546350 @default.
- W3009551409 hasConcept C96250715 @default.
- W3009551409 hasConceptScore W3009551409C105795698 @default.
- W3009551409 hasConceptScore W3009551409C121955636 @default.
- W3009551409 hasConceptScore W3009551409C126838900 @default.
- W3009551409 hasConceptScore W3009551409C127413603 @default.
- W3009551409 hasConceptScore W3009551409C144133560 @default.
- W3009551409 hasConceptScore W3009551409C149782125 @default.
- W3009551409 hasConceptScore W3009551409C17923572 @default.
- W3009551409 hasConceptScore W3009551409C183115368 @default.
- W3009551409 hasConceptScore W3009551409C196083921 @default.
- W3009551409 hasConceptScore W3009551409C201995342 @default.
- W3009551409 hasConceptScore W3009551409C23131810 @default.
- W3009551409 hasConceptScore W3009551409C33923547 @default.
- W3009551409 hasConceptScore W3009551409C40423286 @default.
- W3009551409 hasConceptScore W3009551409C41008148 @default.
- W3009551409 hasConceptScore W3009551409C71924100 @default.
- W3009551409 hasConceptScore W3009551409C77350462 @default.
- W3009551409 hasConceptScore W3009551409C83546350 @default.
- W3009551409 hasConceptScore W3009551409C96250715 @default.
- W3009551409 hasFunder F4320321001 @default.
- W3009551409 hasFunder F4320336751 @default.
- W3009551409 hasIssue "1" @default.