Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009558826> ?p ?o ?g. }
- W3009558826 endingPage "110101" @default.
- W3009558826 startingPage "110101" @default.
- W3009558826 abstract "• Large-scale features of the three-dimensional flow field of a turbulent wall jet are well captured using a reduced-order description of multiple, planar measurements of the velocity field. • An array of 32 pressure transducers is used to effectively estimate the three-dimensionality of the flow due to correlations between the fluctuating surface pressure and the large-scale shear layer motion. • Residual variance and variance inflation factor are two metrics that can effectively gauge the effects of collinearity of an estimation formulation due to correlated sets of estimating sensors. • The three-dimensional velocity field estimates can be used to calculate the three-dimensional, hydrodynamic pressure field. • An acoustic analogy formulated for the turbulent wall jet based on the low-order velocity estimate and calculated pressure field yields reasonable estimates of the far-field noise generation over a low-frequency range. A method for the experimental characterization of the velocity, hydrodynamic pressure, and acoustic generation in a subsonic ( Re H = 25 , 500 ), three-dimensional, turbulent wall jet is presented. An acoustic analogy formulated for the turbulent wall jet shows that the far-field acoustics relate to the Reynolds stress fluctuations of the velocity field or the product of the hydrodynamic pressure fluctuations and the rate-of-strain field. As these quantities cannot be measured directly with sufficient resolution, low-order reconstructions of the velocity field based on the use of the Proper Orthogonal Decomposition and Stochastic Estimation are developed. Reconstruction of the three-dimensional field is accomplished using spanwise-aligned, stereoscopic particle image velocimetry measurements, obtained at 16 streamwise locations synchronously with an array of 32 surface pressure transducers. The velocity field reconstruction is then used to calculate the fluctuating pressure field (via Poisson’s equation) allowing for the evaluation of coupled pressure-velocity terms in addition to an acoustic analogy for the acoustic far-field. Application of these methods show that the large-scale motion throughout the shear layer is captured by the velocity and hydrodynamic pressure field estimates and features of the acoustic far-field are recovered." @default.
- W3009558826 created "2020-03-13" @default.
- W3009558826 creator A5009893032 @default.
- W3009558826 creator A5028067429 @default.
- W3009558826 creator A5042742274 @default.
- W3009558826 creator A5078246154 @default.
- W3009558826 date "2020-08-01" @default.
- W3009558826 modified "2023-09-29" @default.
- W3009558826 title "Low-order estimation of the velocity, hydrodynamic pressure, and acoustic radiation for a three-dimensional turbulent wall jet" @default.
- W3009558826 cites W1619751677 @default.
- W3009558826 cites W1633869374 @default.
- W3009558826 cites W1968027304 @default.
- W3009558826 cites W1971437758 @default.
- W3009558826 cites W1972000959 @default.
- W3009558826 cites W1974858315 @default.
- W3009558826 cites W1975640894 @default.
- W3009558826 cites W1975675243 @default.
- W3009558826 cites W1979226744 @default.
- W3009558826 cites W1986323397 @default.
- W3009558826 cites W1986528327 @default.
- W3009558826 cites W1989456950 @default.
- W3009558826 cites W1993365278 @default.
- W3009558826 cites W1993588822 @default.
- W3009558826 cites W1996610051 @default.
- W3009558826 cites W2003287964 @default.
- W3009558826 cites W2008253207 @default.
- W3009558826 cites W2026357324 @default.
- W3009558826 cites W2031749848 @default.
- W3009558826 cites W2042724122 @default.
- W3009558826 cites W2044248665 @default.
- W3009558826 cites W2047950390 @default.
- W3009558826 cites W2056464957 @default.
- W3009558826 cites W2056892252 @default.
- W3009558826 cites W2059787978 @default.
- W3009558826 cites W2063796335 @default.
- W3009558826 cites W2066009438 @default.
- W3009558826 cites W2076939057 @default.
- W3009558826 cites W2078954558 @default.
- W3009558826 cites W2083222033 @default.
- W3009558826 cites W2083676914 @default.
- W3009558826 cites W2089979907 @default.
- W3009558826 cites W2090914054 @default.
- W3009558826 cites W2104092108 @default.
- W3009558826 cites W2105988718 @default.
- W3009558826 cites W2108988015 @default.
- W3009558826 cites W2112835303 @default.
- W3009558826 cites W2120863174 @default.
- W3009558826 cites W2124542441 @default.
- W3009558826 cites W2131361036 @default.
- W3009558826 cites W2140894171 @default.
- W3009558826 cites W2140964565 @default.
- W3009558826 cites W2152609995 @default.
- W3009558826 cites W2170053678 @default.
- W3009558826 cites W2205734188 @default.
- W3009558826 cites W2288301846 @default.
- W3009558826 cites W2546163559 @default.
- W3009558826 cites W2549642292 @default.
- W3009558826 cites W2565264375 @default.
- W3009558826 cites W2618981818 @default.
- W3009558826 cites W2896350495 @default.
- W3009558826 cites W3003705975 @default.
- W3009558826 cites W3104009841 @default.
- W3009558826 cites W4242935565 @default.
- W3009558826 cites W4320800818 @default.
- W3009558826 doi "https://doi.org/10.1016/j.expthermflusci.2020.110101" @default.
- W3009558826 hasPublicationYear "2020" @default.
- W3009558826 type Work @default.
- W3009558826 sameAs 3009558826 @default.
- W3009558826 citedByCount "4" @default.
- W3009558826 countsByYear W30095588262021 @default.
- W3009558826 countsByYear W30095588262022 @default.
- W3009558826 crossrefType "journal-article" @default.
- W3009558826 hasAuthorship W3009558826A5009893032 @default.
- W3009558826 hasAuthorship W3009558826A5028067429 @default.
- W3009558826 hasAuthorship W3009558826A5042742274 @default.
- W3009558826 hasAuthorship W3009558826A5078246154 @default.
- W3009558826 hasBestOaLocation W30095588261 @default.
- W3009558826 hasConcept C119947313 @default.
- W3009558826 hasConcept C120665830 @default.
- W3009558826 hasConcept C121332964 @default.
- W3009558826 hasConcept C196558001 @default.
- W3009558826 hasConcept C202444582 @default.
- W3009558826 hasConcept C207857233 @default.
- W3009558826 hasConcept C33923547 @default.
- W3009558826 hasConcept C57879066 @default.
- W3009558826 hasConcept C91188154 @default.
- W3009558826 hasConcept C9652623 @default.
- W3009558826 hasConceptScore W3009558826C119947313 @default.
- W3009558826 hasConceptScore W3009558826C120665830 @default.
- W3009558826 hasConceptScore W3009558826C121332964 @default.
- W3009558826 hasConceptScore W3009558826C196558001 @default.
- W3009558826 hasConceptScore W3009558826C202444582 @default.
- W3009558826 hasConceptScore W3009558826C207857233 @default.
- W3009558826 hasConceptScore W3009558826C33923547 @default.
- W3009558826 hasConceptScore W3009558826C57879066 @default.
- W3009558826 hasConceptScore W3009558826C91188154 @default.
- W3009558826 hasConceptScore W3009558826C9652623 @default.
- W3009558826 hasFunder F4320337345 @default.