Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009576683> ?p ?o ?g. }
- W3009576683 endingPage "e17175" @default.
- W3009576683 startingPage "e17175" @default.
- W3009576683 abstract "Background Social media has become a major resource for observing and understanding public opinions using infodemiology and infoveillance methods, especially during emergencies such as disease outbreaks. For public health agencies, understanding the driving forces of web-based discussions will help deliver more effective and efficient information to general users on social media and the web. Objective The study aimed to identify the major contributors that drove overall Zika-related tweeting dynamics during the 2016 epidemic. In total, 3 hypothetical drivers were proposed: (1) the underlying Zika epidemic quantified as a time series of case counts; (2) sporadic but critical real-world events such as the 2016 Rio Olympics and World Health Organization’s Public Health Emergency of International Concern (PHEIC) announcement, and (3) a few influential users’ tweeting activities. Methods All tweets and retweets (RTs) containing the keyword Zika posted in 2016 were collected via the Gnip application programming interface (API). We developed an analytical pipeline, EventPeriscope, to identify co-occurring trending events with Zika and quantify the strength of these events. We also retrieved Zika case data and identified the top influencers of the Zika discussion on Twitter. The influence of 3 potential drivers was examined via a multivariate time series analysis, signal processing, a content analysis, and text mining techniques. Results Zika-related tweeting dynamics were not significantly correlated with the underlying Zika epidemic in the United States in any of the four quarters in 2016 nor in the entire year. Instead, peaks of Zika-related tweeting activity were strongly associated with a few critical real-world events, both planned, such as the Rio Olympics, and unplanned, such as the PHEIC announcement. The Rio Olympics was mentioned in >15% of all Zika-related tweets and PHEIC occurred in 27% of Zika-related tweets around their respective peaks. In addition, the overall tweeting dynamics of the top 100 most actively tweeting users on the Zika topic, the top 100 users receiving most RTs, and the top 100 users mentioned were the most highly correlated to and preceded the overall tweeting dynamics, making these groups of users the potential drivers of tweeting dynamics. The top 100 users who retweeted the most were not critical in driving the overall tweeting dynamics. There were very few overlaps among these different groups of potentially influential users. Conclusions Using our proposed analytical workflow, EventPeriscope, we identified that Zika discussion dynamics on Twitter were decoupled from the actual disease epidemic in the United States but were closely related to and highly influenced by certain sporadic real-world events as well as by a few influential users. This study provided a methodology framework and insights to better understand the driving forces of web-based public discourse during health emergencies. Therefore, health agencies could deliver more effective and efficient web-based communications in emerging crises." @default.
- W3009576683 created "2020-03-13" @default.
- W3009576683 creator A5012118238 @default.
- W3009576683 creator A5027862454 @default.
- W3009576683 creator A5029749535 @default.
- W3009576683 creator A5069570102 @default.
- W3009576683 creator A5081931817 @default.
- W3009576683 creator A5083674230 @default.
- W3009576683 date "2020-07-28" @default.
- W3009576683 modified "2023-10-18" @default.
- W3009576683 title "Identifying Influential Factors in the Discussion Dynamics of Emerging Health Issues on Social Media: Computational Study" @default.
- W3009576683 cites W1809871100 @default.
- W3009576683 cites W1873800563 @default.
- W3009576683 cites W1961375973 @default.
- W3009576683 cites W1971256347 @default.
- W3009576683 cites W1984926150 @default.
- W3009576683 cites W1989585291 @default.
- W3009576683 cites W2001278490 @default.
- W3009576683 cites W2022783018 @default.
- W3009576683 cites W2037986395 @default.
- W3009576683 cites W2089502871 @default.
- W3009576683 cites W2102742655 @default.
- W3009576683 cites W2104923010 @default.
- W3009576683 cites W2115535574 @default.
- W3009576683 cites W2130040909 @default.
- W3009576683 cites W2135498674 @default.
- W3009576683 cites W2146029572 @default.
- W3009576683 cites W2165798627 @default.
- W3009576683 cites W2206279599 @default.
- W3009576683 cites W2341180420 @default.
- W3009576683 cites W2396779641 @default.
- W3009576683 cites W2406229706 @default.
- W3009576683 cites W2513457109 @default.
- W3009576683 cites W2514461241 @default.
- W3009576683 cites W2550199357 @default.
- W3009576683 cites W2553110962 @default.
- W3009576683 cites W2581789519 @default.
- W3009576683 cites W2595177560 @default.
- W3009576683 cites W2605545985 @default.
- W3009576683 cites W2607147673 @default.
- W3009576683 cites W2611405893 @default.
- W3009576683 cites W2747757410 @default.
- W3009576683 cites W2783170893 @default.
- W3009576683 cites W2786372315 @default.
- W3009576683 cites W2794257526 @default.
- W3009576683 cites W2809578469 @default.
- W3009576683 cites W2891031432 @default.
- W3009576683 cites W2923771419 @default.
- W3009576683 cites W2926099714 @default.
- W3009576683 cites W2952375801 @default.
- W3009576683 cites W3157782851 @default.
- W3009576683 cites W4211258374 @default.
- W3009576683 cites W4299828810 @default.
- W3009576683 doi "https://doi.org/10.2196/17175" @default.
- W3009576683 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7420635" @default.
- W3009576683 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32348275" @default.
- W3009576683 hasPublicationYear "2020" @default.
- W3009576683 type Work @default.
- W3009576683 sameAs 3009576683 @default.
- W3009576683 citedByCount "12" @default.
- W3009576683 countsByYear W30095766832021 @default.
- W3009576683 countsByYear W30095766832022 @default.
- W3009576683 countsByYear W30095766832023 @default.
- W3009576683 crossrefType "journal-article" @default.
- W3009576683 hasAuthorship W3009576683A5012118238 @default.
- W3009576683 hasAuthorship W3009576683A5027862454 @default.
- W3009576683 hasAuthorship W3009576683A5029749535 @default.
- W3009576683 hasAuthorship W3009576683A5069570102 @default.
- W3009576683 hasAuthorship W3009576683A5081931817 @default.
- W3009576683 hasAuthorship W3009576683A5083674230 @default.
- W3009576683 hasBestOaLocation W30095766831 @default.
- W3009576683 hasConcept C108827166 @default.
- W3009576683 hasConcept C136764020 @default.
- W3009576683 hasConcept C138816342 @default.
- W3009576683 hasConcept C144133560 @default.
- W3009576683 hasConcept C159047783 @default.
- W3009576683 hasConcept C159110408 @default.
- W3009576683 hasConcept C162853370 @default.
- W3009576683 hasConcept C192975520 @default.
- W3009576683 hasConcept C205649164 @default.
- W3009576683 hasConcept C2522767166 @default.
- W3009576683 hasConcept C2522874641 @default.
- W3009576683 hasConcept C26011011 @default.
- W3009576683 hasConcept C2776361769 @default.
- W3009576683 hasConcept C2777053367 @default.
- W3009576683 hasConcept C41008148 @default.
- W3009576683 hasConcept C518677369 @default.
- W3009576683 hasConcept C54649085 @default.
- W3009576683 hasConcept C71924100 @default.
- W3009576683 hasConcept C99454951 @default.
- W3009576683 hasConceptScore W3009576683C108827166 @default.
- W3009576683 hasConceptScore W3009576683C136764020 @default.
- W3009576683 hasConceptScore W3009576683C138816342 @default.
- W3009576683 hasConceptScore W3009576683C144133560 @default.
- W3009576683 hasConceptScore W3009576683C159047783 @default.
- W3009576683 hasConceptScore W3009576683C159110408 @default.
- W3009576683 hasConceptScore W3009576683C162853370 @default.
- W3009576683 hasConceptScore W3009576683C192975520 @default.