Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009667689> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W3009667689 endingPage "9" @default.
- W3009667689 startingPage "7" @default.
- W3009667689 abstract "Research and development in drug discovery will need to find significant efficiency gains if the industry is to continue generating novel drugs. There is great expectation for machine learning (ML) to provide this boost in R&D productivity, but to harness the full potential of ML, the generation of new, high-quality datasets will be necessary. Here, the authors present a platform that combines high-throughput display and selection data generation with ML. More specifically, deep learning is used to inform the directed evolution of novel biotherapeutics using DNA library synthesis, ultra-high throughput selections, and next generation sequencing. By combining the learnings of multiple in silico models, their platform enables multi-parameter optimisation across multiple important protein characteristics. They also present a model for benchmarking these ML-driven drug discovery platforms according to the accuracy of their underlying in silico models, in conjunction with the throughput of their empirical experimentation." @default.
- W3009667689 created "2020-03-13" @default.
- W3009667689 creator A5023122102 @default.
- W3009667689 creator A5042358806 @default.
- W3009667689 creator A5091540002 @default.
- W3009667689 date "2020-03-01" @default.
- W3009667689 modified "2023-10-16" @default.
- W3009667689 title "Machine learning‐driven protein engineering: a case study in computational drug discovery" @default.
- W3009667689 cites W1569892463 @default.
- W3009667689 cites W2028279608 @default.
- W3009667689 cites W2034287217 @default.
- W3009667689 cites W2118265845 @default.
- W3009667689 cites W2142230632 @default.
- W3009667689 cites W2273267066 @default.
- W3009667689 cites W2578029714 @default.
- W3009667689 cites W2753588101 @default.
- W3009667689 cites W2789816271 @default.
- W3009667689 cites W2805310212 @default.
- W3009667689 cites W2937251344 @default.
- W3009667689 cites W2956569764 @default.
- W3009667689 doi "https://doi.org/10.1049/enb.2019.0019" @default.
- W3009667689 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36970228" @default.
- W3009667689 hasPublicationYear "2020" @default.
- W3009667689 type Work @default.
- W3009667689 sameAs 3009667689 @default.
- W3009667689 citedByCount "3" @default.
- W3009667689 countsByYear W30096676892020 @default.
- W3009667689 countsByYear W30096676892021 @default.
- W3009667689 countsByYear W30096676892022 @default.
- W3009667689 crossrefType "journal-article" @default.
- W3009667689 hasAuthorship W3009667689A5023122102 @default.
- W3009667689 hasAuthorship W3009667689A5042358806 @default.
- W3009667689 hasAuthorship W3009667689A5091540002 @default.
- W3009667689 hasBestOaLocation W30096676891 @default.
- W3009667689 hasConcept C104317684 @default.
- W3009667689 hasConcept C119857082 @default.
- W3009667689 hasConcept C144133560 @default.
- W3009667689 hasConcept C154945302 @default.
- W3009667689 hasConcept C157764524 @default.
- W3009667689 hasConcept C162853370 @default.
- W3009667689 hasConcept C185592680 @default.
- W3009667689 hasConcept C2522767166 @default.
- W3009667689 hasConcept C2775905019 @default.
- W3009667689 hasConcept C41008148 @default.
- W3009667689 hasConcept C55493867 @default.
- W3009667689 hasConcept C555944384 @default.
- W3009667689 hasConcept C60644358 @default.
- W3009667689 hasConcept C74187038 @default.
- W3009667689 hasConcept C76155785 @default.
- W3009667689 hasConcept C81917197 @default.
- W3009667689 hasConcept C86251818 @default.
- W3009667689 hasConcept C86803240 @default.
- W3009667689 hasConceptScore W3009667689C104317684 @default.
- W3009667689 hasConceptScore W3009667689C119857082 @default.
- W3009667689 hasConceptScore W3009667689C144133560 @default.
- W3009667689 hasConceptScore W3009667689C154945302 @default.
- W3009667689 hasConceptScore W3009667689C157764524 @default.
- W3009667689 hasConceptScore W3009667689C162853370 @default.
- W3009667689 hasConceptScore W3009667689C185592680 @default.
- W3009667689 hasConceptScore W3009667689C2522767166 @default.
- W3009667689 hasConceptScore W3009667689C2775905019 @default.
- W3009667689 hasConceptScore W3009667689C41008148 @default.
- W3009667689 hasConceptScore W3009667689C55493867 @default.
- W3009667689 hasConceptScore W3009667689C555944384 @default.
- W3009667689 hasConceptScore W3009667689C60644358 @default.
- W3009667689 hasConceptScore W3009667689C74187038 @default.
- W3009667689 hasConceptScore W3009667689C76155785 @default.
- W3009667689 hasConceptScore W3009667689C81917197 @default.
- W3009667689 hasConceptScore W3009667689C86251818 @default.
- W3009667689 hasConceptScore W3009667689C86803240 @default.
- W3009667689 hasIssue "1" @default.
- W3009667689 hasLocation W30096676891 @default.
- W3009667689 hasLocation W30096676892 @default.
- W3009667689 hasLocation W30096676893 @default.
- W3009667689 hasOpenAccess W3009667689 @default.
- W3009667689 hasPrimaryLocation W30096676891 @default.
- W3009667689 hasRelatedWork W1848359393 @default.
- W3009667689 hasRelatedWork W1966708530 @default.
- W3009667689 hasRelatedWork W2045517587 @default.
- W3009667689 hasRelatedWork W2127025027 @default.
- W3009667689 hasRelatedWork W2155350564 @default.
- W3009667689 hasRelatedWork W2961085424 @default.
- W3009667689 hasRelatedWork W2999063186 @default.
- W3009667689 hasRelatedWork W3009603553 @default.
- W3009667689 hasRelatedWork W3089068736 @default.
- W3009667689 hasRelatedWork W4210854019 @default.
- W3009667689 hasVolume "4" @default.
- W3009667689 isParatext "false" @default.
- W3009667689 isRetracted "false" @default.
- W3009667689 magId "3009667689" @default.
- W3009667689 workType "article" @default.