Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009721949> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3009721949 abstract "The prediction analysis is the approach which is applied to predict future possibilities from the current data. One need not pay cash, the cardholder just gives his card to the shopkeeper, he will swipe the card and the payment will be done in just fractions of a second. Sometimes the credit card can be stolen, and then the attacker can make false transactions. In this type of conditions, the credit card company faces a huge loss. In the existing research work, the voting-based classification approach is applied for credit card fraud detection. The voting based classification is a combination of multiple classifiers like SVM, decision tree etc. The classifier will have maximum accuracy will display its predicted result. To improve the accuracy of prediction analysis the voting based classification method will be replaced with naive bayes classification approach. The naive bayes classifier is the probability based classifier for credit card fraud detection. In the probability based classification method, the probabilities of the target classes are calculated and the probability of the test data is calculated. The test set which is near to the probability class is identified as the target set. The naive bayes classification approach will improve the accuracy of credit card fraud detection. The proposed methodology will be implemented in python and results will be analyzed in terms of accuracy, precision, recall and F-measure. The naive Bayes classifier optimizes the results in terms of accuracy, precision, recall and f-measure is optimized up to 10 to 15% for the credit card fraud detection." @default.
- W3009721949 created "2020-03-13" @default.
- W3009721949 creator A5027757352 @default.
- W3009721949 creator A5083108503 @default.
- W3009721949 date "2020-01-01" @default.
- W3009721949 modified "2023-10-16" @default.
- W3009721949 title "A Hybrid Approach for Credit Card Fraud Detection Using Naive Bayes and Voting Classifier" @default.
- W3009721949 cites W2032908054 @default.
- W3009721949 cites W2774367705 @default.
- W3009721949 cites W2781512393 @default.
- W3009721949 cites W2784235522 @default.
- W3009721949 cites W2785637175 @default.
- W3009721949 cites W2805603599 @default.
- W3009721949 cites W2886330306 @default.
- W3009721949 cites W2887231366 @default.
- W3009721949 doi "https://doi.org/10.1007/978-3-030-43192-1_81" @default.
- W3009721949 hasPublicationYear "2020" @default.
- W3009721949 type Work @default.
- W3009721949 sameAs 3009721949 @default.
- W3009721949 citedByCount "1" @default.
- W3009721949 countsByYear W30097219492021 @default.
- W3009721949 crossrefType "book-chapter" @default.
- W3009721949 hasAuthorship W3009721949A5027757352 @default.
- W3009721949 hasAuthorship W3009721949A5083108503 @default.
- W3009721949 hasConcept C119857082 @default.
- W3009721949 hasConcept C12267149 @default.
- W3009721949 hasConcept C124101348 @default.
- W3009721949 hasConcept C132778050 @default.
- W3009721949 hasConcept C136764020 @default.
- W3009721949 hasConcept C145097563 @default.
- W3009721949 hasConcept C154945302 @default.
- W3009721949 hasConcept C17744445 @default.
- W3009721949 hasConcept C185207860 @default.
- W3009721949 hasConcept C199539241 @default.
- W3009721949 hasConcept C2780747020 @default.
- W3009721949 hasConcept C2983355114 @default.
- W3009721949 hasConcept C41008148 @default.
- W3009721949 hasConcept C52001869 @default.
- W3009721949 hasConcept C520049643 @default.
- W3009721949 hasConcept C84525736 @default.
- W3009721949 hasConcept C94625758 @default.
- W3009721949 hasConcept C95623464 @default.
- W3009721949 hasConceptScore W3009721949C119857082 @default.
- W3009721949 hasConceptScore W3009721949C12267149 @default.
- W3009721949 hasConceptScore W3009721949C124101348 @default.
- W3009721949 hasConceptScore W3009721949C132778050 @default.
- W3009721949 hasConceptScore W3009721949C136764020 @default.
- W3009721949 hasConceptScore W3009721949C145097563 @default.
- W3009721949 hasConceptScore W3009721949C154945302 @default.
- W3009721949 hasConceptScore W3009721949C17744445 @default.
- W3009721949 hasConceptScore W3009721949C185207860 @default.
- W3009721949 hasConceptScore W3009721949C199539241 @default.
- W3009721949 hasConceptScore W3009721949C2780747020 @default.
- W3009721949 hasConceptScore W3009721949C2983355114 @default.
- W3009721949 hasConceptScore W3009721949C41008148 @default.
- W3009721949 hasConceptScore W3009721949C52001869 @default.
- W3009721949 hasConceptScore W3009721949C520049643 @default.
- W3009721949 hasConceptScore W3009721949C84525736 @default.
- W3009721949 hasConceptScore W3009721949C94625758 @default.
- W3009721949 hasConceptScore W3009721949C95623464 @default.
- W3009721949 hasLocation W30097219491 @default.
- W3009721949 hasOpenAccess W3009721949 @default.
- W3009721949 hasPrimaryLocation W30097219491 @default.
- W3009721949 hasRelatedWork W13034104 @default.
- W3009721949 hasRelatedWork W14115579 @default.
- W3009721949 hasRelatedWork W5410279 @default.
- W3009721949 hasRelatedWork W621929 @default.
- W3009721949 hasRelatedWork W6310906 @default.
- W3009721949 hasRelatedWork W6552940 @default.
- W3009721949 hasRelatedWork W728297 @default.
- W3009721949 hasRelatedWork W7465187 @default.
- W3009721949 hasRelatedWork W6520261 @default.
- W3009721949 hasRelatedWork W8703812 @default.
- W3009721949 isParatext "false" @default.
- W3009721949 isRetracted "false" @default.
- W3009721949 magId "3009721949" @default.
- W3009721949 workType "book-chapter" @default.