Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009784715> ?p ?o ?g. }
- W3009784715 endingPage "577" @default.
- W3009784715 startingPage "562" @default.
- W3009784715 abstract "Abstract The amount of transported sediment load by streams is a vital but high nonlinear dynamic process in water resources management. In the current paper, two optimum predictive models subjected to artificial neural network (ANN) were developed. The employed inputs were then prioritized using diverse sensitivity analysis (SA) methods to address new updated but more efficient ANN structures. The models were found through the 263 processed datasets of three rivers in Idaho, USA using nine different measured flow and sediment variables (e.g., channel geometry, geomorphology, hydraulic) for a period of 11 years. The used parameters were selected based on the prior knowledge of the conventional analyses in which the effect of suspended load on bed load was also investigated. Analyzed accuracy performances using different criteria exhibited improved predictability in updated models which can lead to an advanced understanding of used parameters. Despite different SA methods being employed in evaluating model parameters, almost similar results were observed and then verified using relevant sensitivity indices. It was demonstrated that the ranked parameters using SA due to covering more uncertainties can be more reliable. Evaluated models using sensitivity indices showed that contribution of suspended load on predicted bed load is not significant." @default.
- W3009784715 created "2020-03-13" @default.
- W3009784715 creator A5004836313 @default.
- W3009784715 creator A5031191389 @default.
- W3009784715 creator A5031912461 @default.
- W3009784715 creator A5068857495 @default.
- W3009784715 date "2020-03-02" @default.
- W3009784715 modified "2023-10-16" @default.
- W3009784715 title "Updating the neural network sediment load models using different sensitivity analysis methods: a regional application" @default.
- W3009784715 cites W1940221094 @default.
- W3009784715 cites W1968936982 @default.
- W3009784715 cites W1969404656 @default.
- W3009784715 cites W1972368060 @default.
- W3009784715 cites W1974756800 @default.
- W3009784715 cites W1995385635 @default.
- W3009784715 cites W1995711095 @default.
- W3009784715 cites W1996606122 @default.
- W3009784715 cites W1998280422 @default.
- W3009784715 cites W2006772343 @default.
- W3009784715 cites W2014181466 @default.
- W3009784715 cites W2021191744 @default.
- W3009784715 cites W2023559070 @default.
- W3009784715 cites W2023695846 @default.
- W3009784715 cites W2032738630 @default.
- W3009784715 cites W2034476264 @default.
- W3009784715 cites W2040310894 @default.
- W3009784715 cites W2046884547 @default.
- W3009784715 cites W2052075521 @default.
- W3009784715 cites W2052960370 @default.
- W3009784715 cites W2053702248 @default.
- W3009784715 cites W2059746554 @default.
- W3009784715 cites W2065775831 @default.
- W3009784715 cites W2083844448 @default.
- W3009784715 cites W2087070363 @default.
- W3009784715 cites W2087540035 @default.
- W3009784715 cites W2097441841 @default.
- W3009784715 cites W2104609361 @default.
- W3009784715 cites W2110480233 @default.
- W3009784715 cites W2135274825 @default.
- W3009784715 cites W2137919009 @default.
- W3009784715 cites W2141755357 @default.
- W3009784715 cites W2153014583 @default.
- W3009784715 cites W2256578114 @default.
- W3009784715 cites W2272514285 @default.
- W3009784715 cites W2462145020 @default.
- W3009784715 cites W2535540889 @default.
- W3009784715 cites W2584329342 @default.
- W3009784715 cites W2612953262 @default.
- W3009784715 cites W2633902872 @default.
- W3009784715 cites W2735276788 @default.
- W3009784715 cites W2737572103 @default.
- W3009784715 cites W2789532640 @default.
- W3009784715 cites W2791042628 @default.
- W3009784715 cites W2807318731 @default.
- W3009784715 cites W2897659968 @default.
- W3009784715 cites W2903672002 @default.
- W3009784715 cites W2965379793 @default.
- W3009784715 cites W2970709330 @default.
- W3009784715 cites W3011715120 @default.
- W3009784715 cites W925742927 @default.
- W3009784715 doi "https://doi.org/10.2166/hydro.2020.098" @default.
- W3009784715 hasPublicationYear "2020" @default.
- W3009784715 type Work @default.
- W3009784715 sameAs 3009784715 @default.
- W3009784715 citedByCount "92" @default.
- W3009784715 countsByYear W30097847152020 @default.
- W3009784715 countsByYear W30097847152021 @default.
- W3009784715 countsByYear W30097847152022 @default.
- W3009784715 countsByYear W30097847152023 @default.
- W3009784715 crossrefType "journal-article" @default.
- W3009784715 hasAuthorship W3009784715A5004836313 @default.
- W3009784715 hasAuthorship W3009784715A5031191389 @default.
- W3009784715 hasAuthorship W3009784715A5031912461 @default.
- W3009784715 hasAuthorship W3009784715A5068857495 @default.
- W3009784715 hasBestOaLocation W30097847151 @default.
- W3009784715 hasConcept C105795698 @default.
- W3009784715 hasConcept C114793014 @default.
- W3009784715 hasConcept C119857082 @default.
- W3009784715 hasConcept C121332964 @default.
- W3009784715 hasConcept C124101348 @default.
- W3009784715 hasConcept C127162648 @default.
- W3009784715 hasConcept C127313418 @default.
- W3009784715 hasConcept C127413603 @default.
- W3009784715 hasConcept C158622935 @default.
- W3009784715 hasConcept C159390177 @default.
- W3009784715 hasConcept C187320778 @default.
- W3009784715 hasConcept C197640229 @default.
- W3009784715 hasConcept C21200559 @default.
- W3009784715 hasConcept C24326235 @default.
- W3009784715 hasConcept C2816523 @default.
- W3009784715 hasConcept C31258907 @default.
- W3009784715 hasConcept C33923547 @default.
- W3009784715 hasConcept C39432304 @default.
- W3009784715 hasConcept C41008148 @default.
- W3009784715 hasConcept C50644808 @default.
- W3009784715 hasConcept C62520636 @default.
- W3009784715 hasConcept C76886044 @default.
- W3009784715 hasConceptScore W3009784715C105795698 @default.