Matches in SemOpenAlex for { <https://semopenalex.org/work/W3009969114> ?p ?o ?g. }
- W3009969114 endingPage "46823" @default.
- W3009969114 startingPage "46811" @default.
- W3009969114 abstract "Cloud Radio Access Networks (C-RANs) have the potential to enable growing data traffic in 5G networks. However, with the complex states, resource allocation in C-RANs is time-consuming and computational-expensive, making it challenging to meet the demands of energy efficiency and low latency in real-time wireless applications. In this paper, we propose a gradient boosting decision tree (GBDT)-based deep Q-network (DQN) framework for solving the dynamic resource allocation (DRA) problem in a real-time C-RAN, where the heavy computation to solve SOCP problems is cut down and significant power consumption can be saved. First, we apply the GBDT to the regression task to approximate the solutions of second order cone programming (SOCP) problem formulated from beamforming design which consumes heavy computing resources by traditional algorithms. Then, we design a deep Q-network (DQN), coming from a common deep reinforcement learning, to autonomously generate the robust policy that controls the status of remote radio heads (RRHs) and saves the power consumption in long term. The DQN deploys deep neural networks (DNN) to solve the problem of innumerable states in the real-time C-RAN system and generates the policy by observing the state and the reward engendered by GBDT. The generated policy is error-tolerant considering that the gradient boosting regression may not be strictly subject to the constraints of the original problem. Simulation results validate its advantages in terms of the performance and computational complexity for power consumption saving compared with existing methods." @default.
- W3009969114 created "2020-03-13" @default.
- W3009969114 creator A5005823132 @default.
- W3009969114 creator A5013867024 @default.
- W3009969114 creator A5022523766 @default.
- W3009969114 creator A5031064605 @default.
- W3009969114 creator A5081612175 @default.
- W3009969114 date "2020-01-01" @default.
- W3009969114 modified "2023-10-15" @default.
- W3009969114 title "Power Consumption Optimization Using Gradient Boosting Aided Deep Q-Network in C-RANs" @default.
- W3009969114 cites W1596877211 @default.
- W3009969114 cites W1678356000 @default.
- W3009969114 cites W1928152501 @default.
- W3009969114 cites W1967073510 @default.
- W3009969114 cites W1982185024 @default.
- W3009969114 cites W2018552671 @default.
- W3009969114 cites W2064969374 @default.
- W3009969114 cites W2088794999 @default.
- W3009969114 cites W2095292199 @default.
- W3009969114 cites W2100805904 @default.
- W3009969114 cites W2105235982 @default.
- W3009969114 cites W2109005286 @default.
- W3009969114 cites W2112170521 @default.
- W3009969114 cites W2129516068 @default.
- W3009969114 cites W2155806188 @default.
- W3009969114 cites W2167917621 @default.
- W3009969114 cites W2226827734 @default.
- W3009969114 cites W2256188983 @default.
- W3009969114 cites W2522069779 @default.
- W3009969114 cites W2616867685 @default.
- W3009969114 cites W2741401130 @default.
- W3009969114 cites W2806033632 @default.
- W3009969114 cites W2808381205 @default.
- W3009969114 cites W2900617671 @default.
- W3009969114 cites W2901240584 @default.
- W3009969114 cites W2903523957 @default.
- W3009969114 cites W2925689392 @default.
- W3009969114 cites W2939348587 @default.
- W3009969114 cites W2940600945 @default.
- W3009969114 cites W2946839123 @default.
- W3009969114 cites W2968052680 @default.
- W3009969114 cites W2972192263 @default.
- W3009969114 cites W2973921813 @default.
- W3009969114 cites W2979829384 @default.
- W3009969114 cites W2998803561 @default.
- W3009969114 cites W3098537482 @default.
- W3009969114 cites W3100366369 @default.
- W3009969114 cites W3102476541 @default.
- W3009969114 cites W4214717370 @default.
- W3009969114 cites W4232478844 @default.
- W3009969114 cites W4250589301 @default.
- W3009969114 doi "https://doi.org/10.1109/access.2020.2978935" @default.
- W3009969114 hasPublicationYear "2020" @default.
- W3009969114 type Work @default.
- W3009969114 sameAs 3009969114 @default.
- W3009969114 citedByCount "10" @default.
- W3009969114 countsByYear W30099691142020 @default.
- W3009969114 countsByYear W30099691142021 @default.
- W3009969114 countsByYear W30099691142022 @default.
- W3009969114 countsByYear W30099691142023 @default.
- W3009969114 crossrefType "journal-article" @default.
- W3009969114 hasAuthorship W3009969114A5005823132 @default.
- W3009969114 hasAuthorship W3009969114A5013867024 @default.
- W3009969114 hasAuthorship W3009969114A5022523766 @default.
- W3009969114 hasAuthorship W3009969114A5031064605 @default.
- W3009969114 hasAuthorship W3009969114A5081612175 @default.
- W3009969114 hasBestOaLocation W30099691141 @default.
- W3009969114 hasConcept C106365562 @default.
- W3009969114 hasConcept C108037233 @default.
- W3009969114 hasConcept C108583219 @default.
- W3009969114 hasConcept C11413529 @default.
- W3009969114 hasConcept C126255220 @default.
- W3009969114 hasConcept C154945302 @default.
- W3009969114 hasConcept C179799912 @default.
- W3009969114 hasConcept C207029474 @default.
- W3009969114 hasConcept C31258907 @default.
- W3009969114 hasConcept C33923547 @default.
- W3009969114 hasConcept C41008148 @default.
- W3009969114 hasConcept C46686674 @default.
- W3009969114 hasConcept C50644808 @default.
- W3009969114 hasConcept C555944384 @default.
- W3009969114 hasConcept C68649174 @default.
- W3009969114 hasConcept C76155785 @default.
- W3009969114 hasConcept C97541855 @default.
- W3009969114 hasConceptScore W3009969114C106365562 @default.
- W3009969114 hasConceptScore W3009969114C108037233 @default.
- W3009969114 hasConceptScore W3009969114C108583219 @default.
- W3009969114 hasConceptScore W3009969114C11413529 @default.
- W3009969114 hasConceptScore W3009969114C126255220 @default.
- W3009969114 hasConceptScore W3009969114C154945302 @default.
- W3009969114 hasConceptScore W3009969114C179799912 @default.
- W3009969114 hasConceptScore W3009969114C207029474 @default.
- W3009969114 hasConceptScore W3009969114C31258907 @default.
- W3009969114 hasConceptScore W3009969114C33923547 @default.
- W3009969114 hasConceptScore W3009969114C41008148 @default.
- W3009969114 hasConceptScore W3009969114C46686674 @default.
- W3009969114 hasConceptScore W3009969114C50644808 @default.
- W3009969114 hasConceptScore W3009969114C555944384 @default.